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Introduction

The aim of this note is to acquaint students, who want to participate in mathematical Olympiads, to
Olympiad level inequalities from the basics. Inequalities are used in all fields of mathematics. They have
some very interesting properties and numerous applications. Inequalities are often hard to solve, and it is
not always possible to find a nice solution. But it is worth approaching an inequality rather than solving
it. Most inequalities need to be transformed into a suitable form by algebraic means before applying
some theorem. This is what makes the problem rather difficult. Throughout this little note you will find
different ways and approaches to solve an inequality. Most of the problems are recent and thus need a
fruitful combination of wisely applied techniques.

It took me around two years to complete this; although I didn’t work on it for some months during
this period. I have tried to demonstrate how one can use the classical inequalities through different ex-
amples that show different ways of applying them. After almost each section there are some exercise
problems for the reader to get his/her hands dirty! And at the end of each chapter some harder problems
are given for those looking for challenges. Some additional exercises are given at the end of the book for
the reader to practice his/her skills. Solutions to some selected problems are given in the last chapter to
present different strategies and techniques of solving inequality problems. In conclusion, I have tried to
explain that inequalities can be overcome through practice and more practice.

Finally, though this note is aimed for students participating in the Bangladesh Mathematical Olympiad
who will be hoping to be in the Bangladesh IMO team I hope it will be useful for everyone. I am really
grateful to the MathLinks forum for supplying me with the huge collection of problems.

Samin Riasat
28 November, 2008
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Chapter 1

The AM-GM Inequality

1.1 General AM-GM Inequality

The most well-known and frequently used inequality is the Arithmetic mean-Geometric mean inequality
or widely known as the AM-GM inequality. The term AM-GM is the combination of the two terms
Arithmetic Mean and Geometric Mean. The arithmetic mean of two numbers a and b is defined by a+b

2 .
Similarly

√
ab is the geometric mean of a and b. The simplest form of the AM-GM inequality is the

following:

Basic AM-GM Inequality. For positive real numbers a, b

a + b

2
≥
√

ab.

The proof is simple. Squaring, this becomes

(a + b)2 ≥ 4ab,

which is equivalent to
(a− b)2 ≥ 0.

This is obviously true. Equality holds if and only if a = b.

Example 1.1.1. For real numbers a, b, c prove that

a2 + b2 + c2 ≥ ab + bc + ca.

First Solution. By AM-GM inequality, we have

a2 + b2 ≥ 2ab,

b2 + c2 ≥ 2bc,

c2 + a2 ≥ 2ca.

Adding the three inequalities and then dividing by 2 we get the desired result. Equality holds if and only
if a = b = c.

Second Solution. The inequality is equivalent to

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0,

1
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which is obviously true.

However, the general AM-GM inequality is also true for any n positive numbers.

General AM-GM Inequality. For positive real numbers a1, a2, . . . , an the following inequality holds.

a1 + a2 + · · ·+ an

n
≥ n
√

a1a2 · · · an,

with equality if and only if a1 = a2 = · · · = an.

Proof. Here we present the well known Cauchy’s proof by induction. This special kind of induction
is done by performing the following steps:

i. Base case.
ii. Pn =⇒ P2n.
iii. Pn =⇒ Pn−1.

Here Pn is the statement that the AM-GM is true for n variables.

Step 1: We already proved the inequality for n = 2. For n = 3 we get the following inequality:

a + b + c

3
≥ 3
√

abc.

Letting a = x3, b = y3, c = z3 we equivalently get

x3 + y3 + z3 − 3xyz ≥ 0.

This is true by Example 1.1.1 and the identity

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx).

Equality holds for x = y = z, that is, a = b = c.

Step 2: Assuming that Pn is true, we have

a1 + a2 + · · ·+ an

n
≥ n
√

a1a2 · · · an.

Now it’s not difficult to notice that

a1 + a2 + · · ·+ a2n ≥ n n
√

a1a2 · · · an + n n
√

an+1an+2 · · · a2n ≥ 2n 2n
√

a1a2 · · · a2n

implying P2n is true.

Step 3: First we assume that Pn is true i.e.

a1 + a2 + · · ·+ an

n
≥ n
√

a1a2 · · · an.

As this is true for all positive ais, we let an = n−1
√

a1a2 · · · an−1. So now we have

a1 + a2 + · · ·+ an

n
≥ n

√
a1a2 · · · an−1

n−1
√

a1a2 · · · an−1

= n

√
(a1a2 · · · an−1)

n
n−1

= n−1
√

a1a2 · · · an−1

= an,
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which in turn is equivalent to

a1 + a2 + · · ·+ an−1

n− 1
≥ an = n−1

√
a1a2 · · · an−1.

The proof is thus complete. It also follows by the induction that equality holds for a1 = a2 = · · · = an.

Try to understand yourself why this induction works. It can be useful sometimes.

Example 1.1.2. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove that

(1 + a1)(1 + a2) · · · (1 + an) ≥ 2n.

Solution. By AM-GM,

1 + a1 ≥ 2
√

a1,

1 + a2 ≥ 2
√

a2,

...
1 + an ≥ 2

√
an.

Multiplying the above inequalities and using the fact a1a2 · · · an=1 we get our desired result. Equality
holds for ai = 1, i = 1, 2, . . . , n.

Example 1.1.3. Let a, b, c be nonnegative real numbers. Prove that

(a + b)(b + c)(c + a) ≥ 8abc.

Solution. The inequality is equivalent to(
a + b√

ab

)(
b + c√

bc

)(
c + a√

ca

)
≥ 2 · 2 · 2,

true by AM-GM. Equality holds if and only if a = b = c.

Example 1.1.4. Let a, b, c > 0. Prove that

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c.

Solution. By AM-GM we deduce that

a3

bc
+ b + c ≥ 3 3

√
a3

bc
· b · c = 3a,

b3

ca
+ c + a ≥ 3 3

√
b3

ca
· c · a = 3b,

c3

ab
+ a + b ≥ 3 3

√
c3

ab
· a · b = 3c.
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Adding the three inequalities we get

a3

bc
+

b3

ca
+

c3

ab
+ 2(a + b + c) ≥ 3(a + b + c),

which was what we wanted.

Example 1.1.5. (Samin Riasat) Let a, b, c be positive real numbers. Prove that

ab(a + b) + bc(b + c) + ca(c + a) ≥
∑
cyc

ab

√
a

b
(b + c)(c + a).

Solution. By AM-GM,

2ab(a + b) + 2ac(a + c) + 2bc(b + c)
= ab(a + b) + ac(a + c) + bc(b + c) + ab(a + b) + ac(a + c) + bc(b + c)

= a2(b + c) + b2(a + c) + c2(a + b) + (a2b + b2c + a2c) + (ab2 + bc2 + a2c)

≥ a2(b + c) + b2(a + c) + c2(a + b) + (a2b + b2c + a2c) + 3abc

= a2(b + c) + b2(a + c) + c2(a + b) + ab(a + c) + bc(a + b) + ac(b + c)

=
(
a2(b + c) + ab(a + c)

)
+
(
b2(a + c) + bc(a + b)

)
+
(
c2(a + b) + ac(b + c)

)
≥ 2
√

a3b(b + c)(a + c) + 2
√

b3c(a + c)(a + b) + 2
√

c3a(a + b)(b + c)

= 2ab

√
a

b
(b + c)(a + c) + 2cb

√
b

c
(a + c)(a + b) + 2ac

√
c

a
(a + b)(b + c).

Equality holds if and only if a = b = c.

Exercise 1.1.1. Let a, b > 0. Prove that
a

b
+

b

a
≥ 2.

Exercise 1.1.2. For all real numbers a, b, c prove the following chain inequality

3(a2 + b2 + c2) ≥ (a + b + c)2 ≥ 3(ab + bc + ca).

Exercise 1.1.3. Let a, b, c be positive real numbers. Prove that

a3 + b3 + c3 ≥ a2b + b2c + c2a.

Exercise 1.1.4. Let a, b, c be positive real numbers. Prove that

a3 + b3 + c3 + ab2 + bc2 + ca2 ≥ 2(a2b + b2c + c2a).

Exercise 1.1.5. Let a, b, c be positive real numbers such that abc = 1. Prove that

a2 + b2 + c2 ≥ a + b + c.
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Exercise 1.1.6. (a) Let a, b, c > 0. Show that

(a + b + c)
(

1
a

+
1
b

+
1
c

)
≥ 9.

(b) For positive real numbers a1, a2, . . . , an prove that

(a1 + a2 + · · ·+ an)
(

1
a1

+
1
a2

+ · · ·+ 1
an

)
≥ n2.

Exercise 1.1.7. Let a, b, c be nonnegative real numbers such that a + b + c = 3. Prove that

a2 + b2 + c2 + ab + bc + ca ≥ 6.

Exercise 1.1.8. Let a, b, c, d > 0. Prove that

a2

b
+

b2

c
+

c2

d
+

d2

a
≥ a + b + c + d.

1.2 Weighted AM-GM Inequality

The weighted version of the AM-GM inequality follows from the original AM-GM inequality. Suppose
that a1, a2, . . . , an are positive real numbers and let m1, m2, . . . ,mn be positive integers. Then we have
by AM-GM,

a1 + a1 + · · ·+ a1︸ ︷︷ ︸
m1

+ a2 + a2 + · · ·+ a2︸ ︷︷ ︸
m2

+ · · ·+ an + an + · · ·+ an︸ ︷︷ ︸
mn

m1 + m2 + · · ·+ mn

≥

a1a1 . . . a1︸ ︷︷ ︸
m1

a2a2 . . . a2︸ ︷︷ ︸
m2

· · · anan . . . an︸ ︷︷ ︸
mn

 1
m1+m2+···+mn

.

This can be written as
m1a1 + m2a2 + · · ·+ mnan

m1 + m2 + · · ·+ mn
≥ (am1

1 am2
2 · · · a

mn
n )

1
m1+m2+···+mn .

Or equivalently in symbols ∑
miai∑
mi
≥
(∏

ami
i

) 1∑
mi .

Letting ik =
mk∑
mj

=
mk

m1 + m2 + · · ·+ mn
for k = 1, 2, . . . , n we can rewrite this as follows:

Weighted AM-GM Inequality. For positive real numbers a1, a2, . . . , an and n weights i1, i2, . . . , in

such that
n∑

k=1

ik = 1, we have

a1i1 + a2i2 + · · ·+ anin ≥ ai1
1 ai2

2 · · · a
in
n .
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Although we have a proof if i1, i2, . . . , in are rational, this inequality is also true if they are positive real
numbers. The proof, however, is beyond the scope of this note.

Example 1.2.1. Let a, b, c be positive real numbers such that a + b + c = 3. Show that

abbcca ≤ 1

Solution. Notice that

1 =
a + b + c

3

≥ ab + bc + ca

a + b + c

≥
(
abbcca

) 1
a+b+c

,

which implies abbcca ≤ 1.

Example 1.2.2. (Nguyen Manh Dung) Let a, b, c > 0 such that a + b + c = 1. Prove that

aabbcc + abbcca + acbacb ≤ 1.

Solution. From weighted AM-GM, we have

a2 + b2 + c2

a + b + c
≥ (aabbcc)

1
a+b+c =⇒ a2 + b2 + c2 ≥ aabbcc,

ab + bc + ca

a + b + c
≥ (abbcca)

1
a+b+c =⇒ ab + bc + ca ≥ aabbcc,

ac + ba + cb

a + b + c
≥ (acbacb)

1
a+b+c =⇒ ab + bc + ca ≥ acbacb.

Summing up the three inequalities we get

(a + b + c)2 ≥ aabbcc + abbcca + bacbac.

That is,

aabbcc + abbcca + acbacb ≤ 1.

Very few inequalities can be solved using only the weighted AM-GM inequality. So no exercise in this
section.
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1.3 More Challenging Problems

Exercise 1.3.1. Let a, b, c be positive real numbers such that abc = 1. Prove that

a

b
+

b

c
+

c

a
≥ a + b + c.

Exercise 1.3.2. (Michael Rozenberg) Let a, b, c and d be non-negative numbers such that a+b+c+d =
4. Prove that

4
abcd

≥ a

b
+

b

c
+

c

d
+

d

a
.

Exercise 1.3.3. (Samin Riasat) Let a, b, c be positive real numbers. Prove that

a3 + b3 + c3

3
≥ a + b + c

3
· a

2 + b2 + c2

3
≥ a2b + b2c + c2a

3
.

Exercise 1.3.4.(a) (Pham Kim Hung) Let a, b, c be positive real numbers. Prove that

a

b
+

b

c
+

c

a
+

3 3
√

abc

a + b + c
≥ 4.

(b) (Samin Riasat) For real numbers a, b, c > 0 and n ≤ 3 prove that

a

b
+

b

c
+

c

a
+ n

(
3 3
√

abc

a + b + c

)
≥ 3 + n.

Exercise 1.3.5. (Samin Riasat) Let a, b, c be positive real numbers such that a + b + c = ab + bc + ca
and n ≤ 3. Prove that

a2

b
+

b2

c
+

c2

a
+

3n

a2 + b2 + c2
≥ 3 + n.
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Chapter 2

Cauchy-Schwarz and Hölder’s
Inequalities

2.1 Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality is a very powerful inequality. It is very useful in proving both cyclic and
symmetric inequalities. The special equality case also makes it exceptional. The inequality states:

Cauchy-Schwarz Inequality. For any real numbers a1, a2, . . . , an and b1, b2, . . . , bn the following in-
equality holds.

(
a2

1 + a2
2 + · · ·+ a2

n

) (
b2
1 + b2

2 + · · ·+ b2
n

)
≥ (a1b1 + a2b2 + · · ·+ anbn)2,

with equality if the sequences are proportional. That is if
a1

b1
=

a2

b2
= · · · = an

bn
.

First proof. This is the classical proof of Cauchy-Schwarz inequality. Consider the quadratic

f(x) =
n∑

i=1

(aix− bi)2 = x2
n∑

i=1

a2
i − x

n∑
i=1

2aibi +
n∑

i=1

b2
i = Ax2 + Bx + C.

Clearly f(x) ≥ 0 for all real x. Hence if D is the discriminant of f , we must have D ≤ 0. This implies

B2 ≤ 4AC ⇒

(
n∑

i=1

2aibi

)2

≤ 4

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
,

which is equivalent to (
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
≥

(
n∑

i=1

aibi

)2

Equality holds when f(x) = 0 for some x, which happens if x =
b1

a1
=

b2

a2
= · · · = bn

an
.

9
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Second Proof. By AM-GM, we have

a2
1∑
a2

i

+
b2
1∑
b2
i

≥ 2a1b1√(∑
a2

i

) (∑
b2
i

) ,
a2

2∑
a2

i

+
b2
2∑
b2
i

≥ 2a2b2√(∑
a2

i

) (∑
b2
i

) ,
...

a2
n∑
a2

i

+
b2
n∑
b2
i

≥ 2anbn√(∑
a2

i

) (∑
b2
i

) .
Summing up the above inequalities, we have

2 ≥
∑ 2aibi√(∑

a2
i

) (∑
b2
i

) ,
which is equivalent to (

n∑
i=1

a2
i

)(
n∑

i=1

b2
i

)
≥

(
n∑

i=1

aibi

)2

.

Equality holds if for each i ∈ {1, 2, . . . , n}, a2
i

a2
1 + a2

2 + · · ·+ a2
n

=
b2
i

b2
1 + b2

2 + · · ·+ b2
n

, which in turn is equiv-

alent to
a1

b1
=

a2

b2
= · · · = an

bn
.

We could rewrite the above solution as follows

2 =
∑ a2

i

a2
1 + a2

2 + · · ·+ a2
n

+
∑ b2

i

b2
1 + b2

2 + · · ·+ b2
n

≥
∑ 2aibi√(

a2
1 + a2

2 + · · ·+ a2
n

) (
b2
1 + b2

2 + · · ·+ b2
n

) .
Here the sigma

∑
notation denotes cyclic sum and it will be used everywhere throughout this note. It

is recommended that you get used to the summation symbol. Once you get used to it, it makes your life
easier and saves your time.

Cauchy-Schwarz in Engel Form. For real numbers ai, a2, . . . , an and b1, b2, . . . , bn > 0 the follow-
ing inequality holds:

a2
1

b1
+

a2
2

b2
+ · · ·+ a2

n

bn
≥ (a1 + a2 + · · ·+ an)2

b1 + b2 + · · ·+ bn
, (2.1)

with equality if and only if
a1

b1
=

a2

b2
= · · · = an

bn
.

Although this is a direct consequence of the Cauchy-Schwarz inequality, let us prove it in a different
way. For n = 2 this becomes

a2

x
+

b2

y
≥ (a + b)2

x + y
. (2.2)

Clearing out the denominators, this is equivalent to

(ay − bx)2 ≥ 0,
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which is clearly true. For n = 3 we have from (2.2)

a2

x
+

b2

y
+

c2

z
≥ (a + b)2

x + y
+

c2

z
≥ (a + b + c)2

x + y + z
.

A similar inductive process shows that

a2
1

b1
+

a2
2

b2
+ · · ·+ a2

n

bn
≥ (a1 + a2 + · · ·+ an)2

b1 + b2 + · · ·+ bn
.

And the case of equality easily follows too.

From (2.1) we deduce another proof of the Cauchy-Schwarz inequality.

Third Proof. We want to show that(∑
b2
i

)(∑
c2
i

)
≥
(∑

bici

)2
.

Let ai be real numbers such that ai = bici. Then the above inequality is equivalent to

a2
1

b2
1

+
a2

2

b2
2

+ · · ·+ a2
n

b2
n

≥ (a1 + a2 + · · ·+ an)2

b2
1 + b2

2 + · · ·+ b2
n

.

This is just (2.1).

Example 2.1.1. Let a, b, c be real numbers. Show that

3(a2 + b2 + c2) ≥ (a + b + c)2.

Solution. By Cauchy-Schwarz inequality,

(12 + 12 + 12)(a2 + b2 + c2) ≥ (1 · a + 1 · b + 1 · c)2.

Example 2.1.2. (Nesbitt’s Inequality) For positive real numbers a, b, c prove that

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

First Solution. Our inequality is equivalent to

a

b + c
+ 1 +

b

c + a
+ 1 +

c

a + b
+ 1 ≥ 9

2
,

or

(a + b + c)
(

1
b + c

+
1

c + a
+

1
a + b

)
≥ 9

2
.

This can be written as

(x2 + y2 + z2)
(

1
x2

+
1
y2

+
1
z2

)
≥ (1 + 1 + 1)2,

where x =
√

b + c, y =
√

c + a, z =
√

a + b. Then this is true by Cauchy-Schwarz.

Second Solution. As in the previous solution we need to show that

(a + b + c)
(

1
b + c

+
1

c + a
+

1
a + b

)
≥ 9

2
,
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which can be written as

b + c + c + a + a + b

3
·

1
b+c + 1

c+a + 1
a+b

3
≥ 3
√

(b + c)(c + a)(a + b) · 3

√
1

(b + c)(c + a)(a + b)
,

which is true by AM-GM.

Third Solution. We have ∑ a

b + c
=
∑ a2

ab + ca
≥ (a + b + c)2

2(ab + bc + ca)
.

So it remains to show that

(a + b + c)2 ≥ 3(ab + bc + ca)⇔ (a− b)2 + (b− c)2 + (c− a)2 ≥ 0.

Example 2.1.3. For nonnegative real numbers x, y, z prove that√
3x2 + xy +

√
3y2 + yz +

√
3z2 + zx ≤ 2(x + y + z).

Solution. By Cauchy-Schwarz inequality,∑√
x(3x + y) ≤

√(∑
x
)(∑

(3x + y)
)

=
√

4(x + y + z)2 = 2(x + y + z).

Example 2.1.4. (IMO 1995) Let a, b, c be positive real numbers such that abc = 1. Prove that

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

≥ 3
2
.

Solution. Let x =
1
a
, y =

1
b
, z =

1
c

. Then by the given condition we obtain xyz = 1. Note that

∑ 1
a3(b + c)

=
∑ 1

1
x3

(
1
y

+
1
z

) =
∑ x2

y + z
.

Now by Cauchy-Schwarz inequality∑ x2

y + z
≥ (x + y + z)2

2(x + y + z)
=

x + y + z

2
≥

3 3
√

xyz

2
=

3
2
,

where the last inequality follows from AM-GM.

Example 2.1.5. For positive real numbers a, b, c prove that

a

2a + b
+

b

2b + c
+

c

2c + a
≤ 1.

Solution. We have ∑ a

2a + b
≤ 1

⇔
∑(

a

2a + b
− 1

2

)
≤ 1− 3

2

⇔ −1
2

∑ b

2a + b
≤ −1

2

⇔
∑ b

2a + b
≥ 1.
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This follows from Cauchy-Schwarz inequality∑ b

2a + b
=

b2

2ab + b2
+

c2

2bc + c2
+

a2

2ca + a2
≥ (a + b + c)2

2(ab + bc + ca) + b2 + c2 + a2
= 1.

Example 2.1.6. (Vasile Cirtoaje, Samin Riasat) Let x, y, z be positive real numbers. Prove that√
x

x + y
+
√

y

y + z
+
√

z

z + x
≤ 3√

2
.

Solution. Verify that

LHS =

√
x(y + z)(z + x) +

√
y(z + x)(x + y) +

√
z(x + y)(y + z)√

(x + y)(y + z)(z + x)

≤

√
(x(y + z) + y(z + x) + z(x + y)) (z + x + x + y + y + z))

(x + y)(y + z)(z + x)

=

√
4 · (xy + yz + zx)(x + y + z)

(x + y)(y + z)(z + x)

= 2 ·

√
(x + y)(y + z)(z + x) + xyz

(x + y)(y + z)(z + x)

= 2 ·
√

1 +
xyz

(x + y)(y + z)(z + x)

≤ 2 ·
√

1 +
1
8

=
3√
2
,

where the last inequality follows from Example 2.1.3.

Here Cauchy-Schwarz was used in the following form:
√

ax +
√

by +
√

cz ≤
√

(a + b + c)(x + y + z).

Exercise 2.1.1. Prove Example 1.1.1 and Exercise 1.1.6 using Cauchy-Scwarz inequality.

Exercise 2.1.2. Let a, b, c, d be positive real numbers. Prove that

a

b + c
+

b

c + d
+

c

d + a
+

d

a + b
≥ 2.

Exercise 2.1.3 Let a1, a2, . . . , an be positive real numbers. Prove that

a2
1

a2
+

a2
2

a3
+ · · ·+ a2

n

a1
≥ a1 + a2 + · · ·+ an.

Exercise 2.1.4. (Michael Rozenberg) Let a, b, c, d be positive real numbers such that a2+b2+c2+d2 =
4. Show that

a2

b
+

b2

c
+

c2

d
+

d2

a
≥ 4.
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Exercise 2.1.5. Let a, b, c be positive real numbers. Prove that(
a

a + 2b

)2

+
(

b

b + 2c

)2

+
(

c

c + 2a

)2

≥ 1
3
.

Exercise 2.1.6. (Zhautykov Olympiad 2008) Let a, b, c be positive real numbers such that abc = 1.
Show that

1
b(a + b)

+
1

c(b + c)
+

1
a(c + a)

≥ 3
2
.

Exercise 2.1.7. If a, b, c and d are positive real numbers such that a + b + c + d = 4 prove that

a

1 + b2c
+

b

1 + c2d
+

c

1 + d2a
+

d

1 + a2b
≥ 2.

Exercise 2.1.8. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers. Prove that√
a2

1 + b2
1 +

√
a2

2 + b2
2 + · · ·+

√
a2

n + b2
n ≥

√
(a1 + a2 + · · ·+ an)2 + (b1 + b2 + · · ·+ bn)2

Exercise 2.1.9. (Samin Riasat) Let a, b, c be the side lengths of a triangle. Prove that

a

3a− b + c
+

b

3b− c + a
+

c

3c− a + b
≥ 1.

Exercise 2.1.10. (Pham Kim Hung) Let a, b, c be positive real numbers such that a + b + c = 1.
Prove that

a√
a + 2b

+
b√

b + 2c
+

c√
c + 2a

<

√
3
2
.

Exercise 2.1.11. Let a, b, c > 0. Prove that√
2a

b + c
+

√
2b

c + a
+

√
2c

a + b
≤

√
3
(

a

b
+

b

c
+

c

a

)
.

2.2 Hölder’s Inequality

Hölder’s inequality is a generalization of the Cauchy-Schwarz inequality. This inequality states:

Hölder’s Inequality. Let aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n be positive real numbers. Then the following
inequality holds

m∏
i=1

 n∑
j=1

aij

 ≥
 n∑

j=1

m

√√√√ m∏
i=1

aij

m

.
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It looks kind of difficult to understand. So for brevity a special case is the following: for positive real
numbers a, b, c, p, q, r, x, y, z,

(a3 + b3 + c3)(p3 + q3 + r3)(x3 + y3 + z3) ≥ (aqx + bqy + crz)3.

Not only Hölder’s inequality is a generalization of Cauchy-Schwarz inequality, it is also a direct consequence
of the AM-GM inequality, which is demonstrated in the following proof of the special case: by AM-GM,

3 =
∑ a3

a3 + b3 + c3
+
∑ p3

p3 + q3 + r3
+
∑ x3

x3 + y3 + z3

≥ 3
∑ apx

3
√

(a3 + b3 + c3)(p3 + q3 + r3)(x3 + y3 + z3)
,

which is equivalent to

3
√

(a3 + b3 + c3)(p3 + q3 + r3)(x3 + y3 + z3) ≥ apx + bqy + crz.

Verify that this proof also generalizes to the general inequality, and is similar to the one of the Cauchy-
Schwarz inequality. Here are some applications:

Example 2.2.1. (IMO 2001) Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Solution. By Hölder’s inequality,(∑ a√
a2 + 8bc

)(∑ a√
a2 + 8bc

)(∑
a(a2 + 8bc)

)
≥ (a + b + c)3.

Thus we need only show that
(a + b + c)3 ≥ a3 + b3 + c3 + 24abc,

which is equivalent to
(a + b)(b + c)(c + a) ≥ 8abc.

This is just Example 1.1.3.

Example 2.2.2. (Vasile Cirtoaje) For a, b, c > 0 prove that∑ a√
a + 2b

≥
√

a + b + c ≥
∑ a√

2a + b
.

Solution. For the left part, we have from Hölder’s inequality,(∑ a√
a + 2b

)(∑ a√
a + 2b

)(∑
a(a + 2b)

)
≥ (a + b + c)3.

Thus (∑ a√
a + 2b

)2

≥ a + b + c.
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Now for the right part, by Cauchy-Schwarz inequality we have

∑ a√
2a + b

≤

√
(a + b + c)

(∑ a

2a + b

)
.

So it remains to show that ∑ a

2a + b
≤ 1,

which is Example 2.1.5.

Example 2.2.3. (Samin Riasat) Let a, b, c be the side lengths of a triangle. Prove that

1
8abc + (a + b− c)3

+
1

8abc + (b + c− a)3
+

1
8abc + (c + a− b)3

≤ 1
3abc

.

Solution. We have ∑ 1
8abc + (a + b− c)3

≤ 1
3abc

⇔
∑(

1
8abc

− 1
8abc + (a + b− c)3

)
≥ 3

8abc
− 1

3abc

⇔
∑ (a + b− c)3

8abc + (a + b− c)3
≥ 1

3
.

By Hölder’s inequality we obtain

∑ (a + b− c)3

8abc + (a + b− c)3
≥ (a + b + c)3

3(24abc + (a + b− c)3 + (a + c− b)3 + (b + c− a)3)
=

1
3
.

In this solution, the following inequality was used: for all positive real numbers a, b, c, x, y, z,

a3

x
+

b3

y
+

c3

z
≥ (a + b + c)3

3(x + y + z)
.

The proof of this is left to the reader as an exercise.

Example 2.2.4. (IMO Shortlist 2004) If a, b, c are three positive real numbers such that ab+bc+ca =
1, prove that

3

√
1
a

+ 6b + 3

√
1
b

+ 6c + 3

√
1
c

+ 6a ≤ 1
abc

.

Solution. Note that
1
a

+ 6b =
7ab + bc + ca

a
. Hence our inequality becomes

∑
3
√

bc(7ab + bc + ca) ≤ 1

(abc)
2
3

.

From Hölder’s inequality we have

∑
3
√

bc(7ab + bc + ca) ≤ 3

√(∑
a
)2 (

9
∑

bc
)
.
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Hence it remains to show that

9(a + b + c)2(ab + bc + ca) ≤ 1
(abc)2

⇔ [3abc(a + b + c)]2 ≤ (ab + bc + ca)4,

which is obviously true since

(ab + bc + ca)2 ≥ 3abc(a + b + c)⇔
∑

a2(b− c)2 ≥ 0.

Another formulation of Hölder’s inequality is the following: for positive real numbers ai, bi, p, q (1 ≤ i ≤ n)

such that
1
p

+
1
q

= 1,

a1b1 + a2b2 + · · ·+ anbn ≤ (ap
1 + ap

2 + · · ·+ ap
n)

1
p (bq

1 + bq
2 + · · ·+ bq

n)
1
q .

Exercise 2.2.1. Prove Exercise 2.1.3 using Hölder’s inequality.

Exercise 2.2.2. Let a, b, x and y be positive numbers such that 1 ≥ a11 + b11 and 1 ≥ x11 + y11.
Prove that 1 ≥ a5x6 + b5y6.

Exercise 2.2.3. Prove that for all positive real numbers a, b, c, x, y, z,

a3

x
+

b3

y
+

c3

z
≥ (a + b + c)3

3(x + y + z)
.

Exercise 2.2.4. Let a, b, and c be positive real numbers. Prove the inequality

a6

b2 + c2
+

b6

a2 + c2
+

c6

a2 + b2
≥ abc(a + b + c)

2
.

Exercise 2.2.5. (Kyiv 2006) Let x, y and z be positive numbers such that xy + xz + yz = 1. Prove
that

x3

1 + 9y2xz
+

y3

1 + 9z2yx
+

z3

1 + 9x2yz
≥ (x + y + z)3

18
.

Exercise 2.2.6. Let a, b, c > 0. Prove that

ab√
ab + 2c2

+
bc√

bc + 2a2
+

ca√
ca + 2b2

≥
√

ab + bc + ca.

2.3 More Challenging Problems

Exercise 2.3.1. Let a, b, c > 0 and k ≥ 2. Prove that

a

ka + b
+

b

kb + c
+

c

kc + a
≤ 3

k + 1
.
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Exercise 2.3.2. (Samin Riasat) Let a, b, c, m, n be positive real numbers. Prove that

a2

b(ma + nb)
+

b2

c(mb + nc)
+

c2

a(mc + na)
≥ 3

m + n
.

Another formulation: Let a, b, c, m, n be positive real numbers such that abc = 1 Prove that

1
b(ma + nb)

+
1

c(mb + nc)
+

1
a(mc + na)

≥ 3
m + n

.

Exercise 2.3.3 (Michael Rozenberg, Samin Riasat) Let x, y, z > 0. Prove that∑
cyc

√
x2 + xy + y2 ≥

∑
cyc

√
2x2 + xy.

Exercise 2.3.4 (Vasile Cirtoaje and Samin Riasat) Let a, b, c, k > 0. Prove that

a√
ka + b

+
b√

kb + c
+

c√
kc + a

<

√
k + 1

k
(a + b + c).

Exercise 2.3.5. (Michael Rozenberg and Samin Riasat) Let x, y, z be positive real numbers such
that xy + yz + zx ≥ 3. Prove that

x√
4x + 5y

+
y√

4y + 5z
+

z√
4z + 5x

≥ 1.

Exercise 2.3.6. Let a, b, c > 0 such that a + b + c = 1. Prove that
√

a2 + abc

c + ab
+
√

b2 + abc

a + bc
+
√

c2 + abc

b + ca
≤ 1

2
√

abc
.

*Exercise 2.3.7. (Ji Chen, Pham Van Thuan and Samin Riasat) Let x, y, z be positive real
numbers. Prove that

4

√
27(x2 + y2 + z2)

4
≥ x√

x + y
+

y√
y + z

+
z√

z + x
≥ 4

√
27(yz + zx + xy)

4
.



Chapter 3

Rearrangement and Chebyshev’s
Inequalities

3.1 Rearrangement Inequality

A wonderful inequality is that called the Rearrangement inequality. The statement of the inequality is as
follows:

Rearrangement Inequality. Let (ai)n
i=1 and (bi)n

i=1 be sequences of positive numbers increasing or
decreasing in the same direction. That is, either a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn or
a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn. Then for any permutation (cn) of the numbers (bn) we have
the following inequalities

n∑
i=1

aibi ≥
n∑

i=1

aici ≥
n∑

i=1

aibn−i+1.

That is, the maximum of the sum occurs when the two sequences are similarly sorted, and the minimum
occurs when they are oppositely sorted.

Proof. Let S denote the sum a1b1 + a2b2 + · · · + anbn and S′ denote the sum a1b1 + a2b2 + · · · +
axby + · · ·+ aybx + · · ·+ anbn. Then

S − S′ = axbx + ayby − axby − aybx = (ax − ay)(bx − by) ≥ 0,

since both of ax − ay and bx − by are either positive, or negative, as the sequences are similarly sorted.
Hence the sum gets smaller whenever any two of the terms alter. This implies that the maximum must
occur when the sequences are sorted similarly. The other part of the inequality follows in a quite similar
manner and is left to the reader.

A useful technique. Let f(a1, a2, . . . , an) be a symmetric expression in a1, a2, . . . , an. That is, for
any permutation a′1, a

′
2, . . . , a

′
n we have f(a1, a2, . . . , an) = f(a′1, a

′
2, . . . , a

′
n). Then in order to prove

f(a1, a2, . . . , an) ≥ 0 we may assume, without loss of generality, that a1 ≥ a2 ≥ · · · ≥ an. The reason
we can do so is because f remains invariant under any permutation of the ai’s. This assumption is quite
useful sometimes; check out the following examples:

Example 3.1.1. Let a, b, c be real numbers. Prove that

a2 + b2 + c2 ≥ ab + bc + ca.

19
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Solution. We may assume, WLOG1, that a ≥ b ≥ c ≥ 0, since the signs of a, b, c does not affect the left
side of the inequality. Applying the Rearrangement inequality for the sequences (a, b, c) and (a, b, c) we
conclude that

a · a + b · b + c · c ≥ a · b + b · c + c · a
=⇒ a2 + b2 + c2 ≥ ab + bc + ca.

Example 3.1.2. For positive real numbers a, b, c prove that

a3 + b3 + c3 ≥ a2b + b2c + c2a.

Solution. WLOG let a ≥ b ≥ c. Applying Rearrangement inequality for (a2, b2, c2) and (a, b, c) we
conclude that

a2 · a + b2 · b + c2 · c ≥ a2 · b + b2 · c + c2 · a.

Example 3.1.3. (Nesbitt’s inequality) For positive real numbers a, b, c prove that

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
.

Solution. Since the inequality is symmetric in a, b, c we may WLOG assume that a ≥ b ≥ c. Then verify
that b + c ≤ c + a ≤ a + b i.e. 1

b+c ≥
1

c+a ≥
1

a+b . Now applying the Rearrangement inequality for the

sequences (a, b, c) and
(

1
b+c ,

1
c+a , 1

a+b

)
we conclude that

a

b + c
+

b

c + a
+

c

a + b
≥ b

b + c
+

c

c + a
+

a

a + b
,

and
a

b + c
+

b

c + a
+

c

a + b
≥ c

b + c
+

a

c + a
+

b

a + b
.

Adding the above inequalities we get

2
(

a

b + c
+

b

c + a
+

c

a + b

)
≥ b + c

b + c
+

c + a

c + a
+

a + b

a + b
= 3.

which was what we wanted.

Example 3.1.4 (IMO 1975) We consider two sequences of real numbers x1 ≥ x2 ≥ . . . ≥ xn and
y1 ≥ y2 ≥ . . . ≥ yn. Let z1, z2, . . . . , zn be a permutation of the numbers y1, y2, . . . , yn. Prove that

n∑
i=1

(xi − yi)2 ≤
n∑

i=1

(xi − zi)2.

Solution. Expanding and using the fact that
∑

y2
i =

∑
z2
i , we are left to prove that

n∑
i=1

xiyi ≥
n∑

i=1

xizi,

1WLOG=Without loss of generality.
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which is the Rearrangement inequality.

Example 3.1.5. (Rearrangement inequality in Exponential form) Let a, b, c ≥ 1. Prove that

aabbcc ≥ abbcca

First Solution. First assume that a ≥ b ≥ c ≥ 1. Then

aabbcc ≥ abbcca

⇔ aa−bbb−c ≥ ca−bcb−c,

which is true, since aa−b ≥ ca−b and bb−c ≥ cb−c.

Now let 1 ≤ a ≤ b ≤ c. Then

aabbcc ≥ abbcca

⇔ cc−bcb−a ≥ bc−bac−a,

which is also true. Hence the inequality holds in all cases.

Second Solution. Here is another useful argument: take ln on both sides

a ln a + b ln b + c ln c ≥ a ln b + b ln c + c ln a.

It is now clear that this holds by Rearrangement since the sequences (a, b, c) and (ln a, ln b, ln c) are sorted
similarly.

Note that the inequality holds even if a, b, c > 0, and in this case the first solution works but the second
solution needs some treatment which is left to the reader to fix.

Example 3.1.6. Let a, b, c ≥ 0. Prove that

a3 + b3 + c3 ≥ 3abc.

Solution. Applying the Rearrangement inequality for (a, b, c), (a, b, c), (a, b, c) we conclude that

a · a · a + b · b · b + c · c · c ≥ a · b · c + b · c · a + c · a · b.

In the same way as above, we can prove the AM-GM inequality for n variables for any n ≥ 2. This
demonstrates how strong the Rearrangement inequality is. Also check out the following example, illus-
trating the strength of Rearrangement inequality:

Example 3.1.7 (Samin Riasat) Let a, b, c be positive real numbers. Prove that(∑
cyc

a

b + c

)2

≤

(∑
cyc

a2

b2 + bc

)(∑
cyc

a

c + a

)
.

Solution. Note that the sequences
(√

a3

b+c ,
√

b3

c+a ,
√

c3

a+b

)
and

(√
1

ca+ab ,
√

1
ab+bc ,

√
1

bc+ca

)
are oppositely

sorted. Therefore by Rearrangement inequality we get∑ a

b + c
=
∑√

a3

b + c
·
√

1
ca + ab

≤
∑√

a3

b + c
·
√

1
ab + bc

.
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Now from Cauchy-Schwarz inequality

∑√
a3

b + c
·
√

1
ab + bc

=
∑√

a2

b(b + c)
·
√

a

c + a
≤

√(∑ a2

b(b + c)

)(∑ a

c + a

)
,

which was what we wanted.

Can you generalize the above inequality?

Exercise 3.1.1. Prove Example 1.1.4 using Rearrangement inequality.

Exercise 3.1.2. For a, b, c > 0 prove that

ab

c
+

bc

a
+

ca

b
≥ a + b + c.

Exercise 3.1.3. Let a, b, c > 0. Prove that

a8 + b8 + c8

a3b3c3
≥ 1

a
+

1
b

+
1
c
.

Exercise 3.1.4. Prove Exercise 2.1.3 using Rearrangement inequality.

Exercise 3.1.5. Let a, b, c be positive real numbers. Prove that

a

b(b + c)
+

b

c(c + a)
+

c

a(a + b)
≥ 1

b + c
+

1
c + a

+
1

a + b
.

Exercise 3.1.6. (Yaroslavle 2006) Let a > 0, b > 0 and ab = 1. Prove that

a

a2 + 3
+

b

b2 + 3
≤ 1

2
.

Exercise 3.1.7. Let a, b, c be positive real numbers satisfying abc = 1. Prove that

ab2 + bc2 + ca2 ≥ a + b + c.

Exercise 3.1.8. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

ab + c

a + b
+

ac + b

a + c
+

bc + a

b + c
≥ 2.

Exercise 3.1.9. (Novosibirsk 2007) Let a and b be positive numbers, and n ∈ N. Prove that

(n + 1)(an+1 + bn+1) ≥ (a + b)(an + an−1b + · · ·+ bn).
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3.2 Chebyshev’s inequality

Chebyshev’s inequality is a direct consequence of the Rearangement inquality. The statement is as follows:

Chebyshev’s Inequality. Let (ai)n
i=1 and (bi)n

i=1 be two sequences of positive real numbers.

(i) If the sequences are similarly sorted, then

a1b1 + a2b2 + · · ·+ anbn

n
≥ a1 + a2 + · · ·+ an

n
· b1 + b2 + · · ·+ bn

n
. (3.1)

(ii) If the sequences are oppositely sorted, then

a1b1 + a2b2 + · · ·+ anbn

n
≤ a1 + a2 + · · ·+ an

n
· b1 + b2 + · · ·+ bn

n
. (3.2)

Proof. We will only prove (3.1). Since the sequences are similarly sorted, Rearrangement inequality
implies

a1b1 + a2b2 + · · ·+ anbn = a1b1 + a2b2 + · · ·+ anbn,

a1b1 + a2b2 + · · ·+ anbn ≥ a1b2 + a2b3 + · · ·+ anb1,

a1b1 + a2b2 + · · ·+ anbn ≥ a1b3 + a2b4 + · · ·+ anb2,

...
a1b1 + a2b2 + · · ·+ anbn ≥ a1bn + a2b1 + · · ·+ anbn−1.

Adding the above inequalities we get

n(a1b1 + a2b2 + · · ·+ anbn) ≥ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn),

which was what we wanted.

Example 3.2.1. For a, b, c > 0 prove that

3(a2 + b2 + c2) ≥ (a + b + c)2.

Solution. Applying Chebyshev’s inequality for (a, b, c) and (a, b, c) we conclude that

3(a · a + b · b + c · c) ≥ (a + b + c)(a + b + c).

Example 3.2.2. Let a, b, c > 0. Prove that

a8 + b8 + c8

a3b3c3
≥ 1

a
+

1
b

+
1
c
.

Solution. From Chebyshev’s inequality we conclude that

3(a8 + b8 + c8) ≥ (a6 + b6 + c6)(a2 + b2 + c2)

≥ 3a2b2c2(a2 + b2 + c2)

≥ 3a2b2c2(ab + bc + ca),
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hence
a8 + b8 + c8

a3b3c3
≥ ab + bc + ca

abc
=

1
a

+
1
b

+
1
c
.

Example 3.2.3. Let a ≥ b ≥ c ≥ 0 and 0 ≤ x ≤ y ≤ z. Prove that

a

x
+

b

y
+

c

z
≥ a + b + c

3
√

xyz
≥ 3

(
a + b + c

x + y + z

)
. (3.3)

Solution. Applying Chebyshev’s inequality for a ≥ b ≥ c and 1
x ≥

1
y ≥

1
z we deduce that

3
(

a

x
+

b

y
+

c

z

)
≥ (a + b + c)

(
1
x

+
1
y

+
1
z

)
≥ 3(a + b + c)

3
√

xyz
≥ 9

(
a + b + c

x + y + z

)
,

which was what we wanted. Here the last two inequalities follow from AM-GM.

Example 3.2.4. Let a, b, c > 0. Prove that

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c.

Solution. WLOG assume that a ≥ b ≥ c. Then a3 ≥ b3 ≥ c3 and bc ≤ ca ≤ ab. Hence using (3.3) and
(3.1) we conclude that

∑ a3

bc
≥ 3(a3 + b3 + c3)

ab + bc + ca
≥ (a + b + c)(a2 + b2 + c2)

ab + bc + ca
≥ a + b + c.

Exercise 3.2.1. Prove the second Chebyshev’s inequality (3.2).

Exercise 3.2.2. Let a1, a2, . . . , an ≥ 0 and k ≥ 1. Prove that

k

√
ak

1 + ak
2 + · · ·+ ak

n

n
≥ a1 + a2 + · · ·+ an

n
.

Exercise 3.2.3. Deduce a proof of Nesbitt’s inequality from Chebyshev’s inequality. (Hint: you may use
Example 3.2.3)

Exercise 3.2.4. Let a1 ≥ a2 ≥ · · · ≥ an and b1 ≤ b2 ≤ · · · ≤ bn be positive. Prove that

n∑
i=1

ai

bi
≥ a1 + a2 + · · ·+ an

n
√

b1b2 . . . bn
≥ n(a1 + a2 + · · ·+ an)

b1 + b2 + · · ·+ bn
.

Exercise 3.2.5. Let a ≥ c ≥ 0 and b ≥ d ≥ 0. Prove that

(a + b + c + d)2 ≥ 8(ad + bc).

Exercise 3.2.6. (Radu Titiu) Let a, b, c > 0 such that a2 + b2 + c2 ≥ 3. Show that

a2

b + c
+

b2

c + a
+

c2

a + b
≥ 3

2
.
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Exercise 3.2.7. Let a, b, c > 0 such that abc = 1. Prove that

9
2
≤
∑
cyc

1
c2(a + b)

·
∑
cyc

ab ≤ 3
∑
cyc

ab

c2(a + b)
.

Exercise 3.2.8. Let a, b, c > 0. Prove that

aabbcc ≥ (abc)
a+b+c

3 .

3.3 More Chellenging Problems

Exercise 3.3.1. (Samin Riasat) Let a, b, c > 0. Prove that

max{a, b, c}
min{a, b, c}

+
min{a, b, c}
max{a, b, c}

≥ a + b + c
3
√

abc
− 1.

Exercise 3.3.2. Let a1 ≥ a2 · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn be positive.

(i) If (ci)n
i=1 is a permutation of (bi)n

i=1 prove that

ab1−c1
1 ab2−c2

2 · · · abn−cn
n ≥ 1.

(ii) Let b =
b1 + b2 + · · ·+ bn

n
. Prove that

ab1−b
1 ab2−b

2 · · · abn−b
n ≥ 1.

Exercise 3.3.3. Let x, y, z ∈ R+. Prove that

x3 + y3 + z3

3xyz
+

3 3
√

xyz

x + y + z
≥ 2.

Exercise 3.3.4. (Samin Riasat) Let a, b, c be positive real numbers. Prove that

a2 + b2 + c2

ab + bc + ca
≥ 2

3

(
a

b + c
+

b

c + a
+

c

a + b

)
.

*Exercise 3.3.5. (Samin Riasat) Let a, b, c be positive real numbers and n be a positive integer. Prove
that (∑

cyc

a

b + c

)n

≤

(∑
cyc

an

bn + bn−1c

)(∑
cyc

a

c + a

)n−1

.
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Other Useful Strategies

4.1 Schur’s Inequality

Let a, b, c be positive real numbers, and n be positive. Then the following inequality holds:

an(a− b)(a− c) + bn(b− c)(b− a) + cn(c− a)(c− b) ≥ 0,

with equality if and only if a = b = c or a = b, c = 0 and permutations.

The above inequality is known as Schur’s inequality, after Issai Schur.

Proof. Since the inequality is symmetric in a, b, c WLOG we may assume that a ≥ b ≥ c. Then
the inequality is equivalent to

(a− b)(an(a− c)− bn(b− c)) + cn(a− c)(b− c) ≥ 0,

which is obviously true.

4.2 Jensen’s Inequality

Suppose f is a convex function in [a, b]. Then the inequality

f

(
a1 + a2 + · · ·+ an

n

)
≤ f(a1) + f(a2) + · · ·+ f(an)

n

is true for all ai ∈ [a, b]. Similarly, if f is concave in the interval the sign of inequality turns over. This is
called Jensen’s inequality.

The convexity is usually determined by checking if f ′′(x) ≥ 0 holds for all x ∈ [a, b]. Similarly for
concavity one can check if f ′′(x) ≤ 0 for all x ∈ [a, b]. Here is an example:

Example 4.2.1. Let a, b, c > 0. Prove that

aabbcc ≥
(

a + b + c

3

)a+b+c

.

Solution. Consider the function f(x) = x ln x. Verify that f ′′(x) = 1/x > 0 for all x ∈ R+. Thus f is

27
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convex in R+ and by Jensen’s inequality we conclude that

f(a) + f(b) + f(c) ≥ 3f

(
a + b + c

3

)
⇔ ln aa + ln bb + ln cc ≥ 3 ln

(
a + b + c

3

)a+b+c
3

,

which is equivalent to

ln(aabbcc) ≥ ln
(

a + b + c

3

)a+b+c

,

which was what we wanted.

4.3 Minkowski’s Inequality

Minkowski’s inequality states that for positive numbers xi, yi and p the following inequality holds:(
n∑

i=1

(xi + yi)p

) 1
p

≤

(
n∑

i=1

xp
i

) 1
p

+

(
n∑

i=1

yp
i

) 1
p

.

4.4 Ravi Transformation

Suppose that a, b, c are the side lengths of a triangle. Then positive real numbers x, y, z exist such that
a = x + y, b = y + z and c = z + x.

To verify this, let s be the semi-perimeter. Then denote z = s − a, x = s − b, y = s − c and the

conclusion is obvious since s− a =
b + c− a

2
> 0 and similarly for the others.

Geometrically, let D,E, F denote the points of tangency of BC, CA, AB, respectively, with the incir-
cle of triangle ABC. Then BD = BF = x, CD = CE = y and AE = AF = z implies the conclusion.

Here are some examples of how the Ravi transformation can transform a geometric inequality into an
algebraic one:

Example 4.4.1. (IMO 1964) Let a, b, c be the side lengths of a triangle. Prove that

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ 3abc.

First Solution. Verify that the inequality can be written as

(a + b− c)(b + c− a)(c + a− b) ≤ abc.

Let a = x + y, b = y + z and c = z + x. Then the above inequality becomes

8xyz ≤ (x + y)(y + z)(z + x),

which is Example 1.1.3.

Second Solution. The inequality is equivalent to

a3 + b3 + c3 + 3abc ≥ a2b + ab2 + b2c + bc2 + c2a + ca2,

or,
a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b) ≥ 0,
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which is Schur’s inequality.

Example 4.4.2. Let a, b, c be the lengths of the sides of a triangle. Prove that√
3
(√

ab +
√

bc +
√

ca
)
≥
√

a + b− c +
√

b + c− a +
√

c + a− b.

Solution. Let x, y, z > 0 such that a = x + y, b = y + z, c = z + x. Then our inequality is equivalent to

3
∑
cyc

√
(x + y)(y + z) ≥ 2

(∑
cyc

√
x

)2

.

From Cauchy-Schwarz inequality,

3
∑
cyc

√
(x + y)(y + z) ≥ 3

∑
cyc

(y +
√

zx)

≥ 2
∑
cyc

y + 4
∑
cyc

√
zx

= 2

(∑
cyc

√
x

)2

.

4.5 Normalization

Homogeneous inequalities can be normalized, e.g. applied restrictions with homogeneous expressions in
the variables. For example, in order to show that a3 + b3 + c3 − 3abc ≥ 0, one may assume, WLOG, that
abc = 1 or a + b + c = 1 etc. The reason is explained below.

Suppose that abc = k3. Let a = ka′, b = kb′, c = kc′. This implies a′b′c′ = 1, and our inequality
becomes a′3 + b′3 + c′3− 3a′b′c′ ≥ 0, which is the same as before. Therefore the restriction abc = 1 doesn’t
change anything of the inequality. Similarly one might also assume a + b + c = 1. The reader is requested
to find out how it works.

4.6 Homogenization

This is the opposite of Normalization. It is often useful to substitute a = x/y, b = y/z, c = z/x, when
the condition abc = 1 is given. Similarly when a + b + c = 1 we can substitute a = x/x + y + z, b =
y/x + y + z, c = z/x + y + z to homogenize the inequality. For an example of homogenization note that
we can write the inequality in exercise 1.3.1 in the following form:

a

b
+

b

c
+

c

a
≥ a + b + c

3
√

abc
.

On the other hand, if we substitute a = x/y, b = y/z, c = z/x the inequality becomes,

zx

y2
+

xy

z2
+

yz

x2
≥ x

y
+

y

z
+

z

x
,

which clearly looks easier to deal with (Hint: Rearrangement). Many such substitutions exist, and the
reader is urged to study them and find them using his/her own ideas.
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Chapter 5

Supplementary Problems

Exercise 5.1.1. Let a, b, c be nonnegative reals. Prove that√
ab + bc + ca

3
≤ 3

√
(a + b) (b + c) (c + a)

8
.

Exercise 5.1.2. For a, b, c > 0 prove that

a

(b + c)4
+

b

(c + a)4
+

c

(a + b)4
≥ 3

2(a + b)(b + c)(c + a)
.

Exercise 5.1.3. Let a, b, c be real numbers. Prove that

2 + (abc)2 + a2 + b2 + c2 ≥ 2(ab + bc + ca).

Exercise 5.1.4. (Michael Rozenberg) Let a, b, c be non-negative numbers such that a + b + c = 3.
Prove that

a
√

2b + c2 + b
√

2c + a2 + c
√

2a + b2 ≤ 3
√

3.

Exercise 5.1.5. For any acute-angled triangle ABC show that

tan A + tan B + tan C ≥ s

r
,

where s and r denote the semi-perimeter and the inraduis, respectively.

Exercise 5.1.6. (Iran 2008) Find the smallest real K such that for each x, y, z ∈ R+:

x
√

y + y
√

z + z
√

x ≤ K
√

(x + y)(y + z)(z + x).

Exercise 5.1.7. (USA 1997) Prove the following inequality for a, b, c > 0

1
a3 + b3 + abc

+
1

b3 + c3 + abc
+

1
a3 + c3 + abc

≤ 1
abc

.

Exercise 5.1.8. Let x ≥ y ≥ z > 0 be real numbers. Prove that

x2y

z
+

y2z

x
+

z2x

y
≥ x2 + y2 + z2.

31
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Exercise 5.1.9. (Greece 2007) Let a, b, c be sides of a triangle. Show that

(c + a− b)4

a(a + b− c)
+

(a + b− c)4

b(b + c− a)
+

(b + c− a)4

c(c + a− b)
≥ ab + bc + ca.

Exercise 5.1.10 (Samin Riasat) Let a, b, c be sides of a triangle. Show that

(c + a− b)4

a(a + b− c)
+

(a + b− c)4

b(b + c− a)
+

(b + c− a)4

c(c + a− b)
≥ a2 + b2 + c2.

Exercise 5.1.11. (Crux Mathematicorum) If a, b and c are the sidelengths of a triangle, then prove
the inequality

(b + c)2

a2 + bc
+

(c + a)2

b2 + ca
+

(a + b)2

c2 + ab
≥ 6.

Exercise 5.1.12. Let a, b, c be the side-lengths of a triangle. Prove that∑
cyc

(a + b)(b + c)
√

a− b + c ≥ 4(a + b + c)
√

(−a + b + c)(a− b + c)(a + b− c).

Exercise 5.1.13. Prove that if a, b, c > 0 then
√

abc(
√

a +
√

b +
√

c) + (a + b + c)2 ≥ 4
√

3abc(a + b + c).

Exercise 5.1.14. Let a, b, c be non-negative real numbers such that a + b + c = 1. Prove that

ab + bc + ca ≤ 1
8

∑
cyc

√
(1− ab)(1− bc) ≤ a2 + b2 + c2.

Exercise 5.1.15. Let a, b and c be nonnegative real numbers such that
1

a2 + 1
+

1
b2 + 1

+
1

c2 + 1
= 2.

Prove that ab + bc + ca ≤ 3
2
.

Exercise 5.1.16. (Korea 1998) Let I be the incenter of triangle ABC. Prove that

3(IA2 + IB2 + IC2) ≥ AB2 + BC2 + CA2.

Exercise 5.1.17. (Samin Riasat) Let a, b, c be positive real numbers such that a6 + b6 + c6 = 3. Prove
that

a7b2 + b7c2 + c7a2 ≤ 3.

Exercise 5.1.18. (Samin Riasat) Let x, y, z be positive real numbers. Prove that

x

y
+

y

z
+

z

x
≥
√

x + y

2z
+

√
y + z

2x
+
√

z + x

2y
.

Exercise 5.1.19. (Samin Riasat) Let x, y, z be positive real numbers. Prove that√
xy

(x + y)(y + z)
+
√

yz

(y + z)(z + x)
+
√

zx

(z + x)(x + y)
≤ 3

2
.
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Hints and Solutions to Selected
Problems

1.1.2. Expand and use Example 1.1.1.
1.1.3. a3 + a3 + b3 ≥ 3a2b.
1.3.1. Use a

b + a
b + b

c ≥
3a

3√
abc

to prove

a

b
+

b

c
+

c

a
≥ a + b + c

3
√

abc
.

1.3.4. See hint for 1.3.1.
1.3.5. Prove and use the following:

a2

b
+

b2

c
+

c2

a
≥ (a + b + c)(a2 + b2 + c2)

ab + bc + ca
.

2.1.2. a
b+c = a2

ab+ca .
2.1.5. Use Example 2.1.5.

2.3.6. Solution: Note that
∑ √

a2+abc
c+ab =

∑ √a(c+a)(a+b)

(b+c)(c+a) .

Therefore our inequality is equivalent to∑√
a(c + a)(a + b)
(b + c)(c + a)

≤ a + b + c

2
√

abc

⇐⇒
∑

a(a + b)
√

bc(c + a)(a + b) ≤ 1
2

(a + b + c)(a + b)(b + c)(c + a).

By AM-GM, ∑
a(a + b) · 2

√
bc(c + a)(a + b) ≤

∑
a(a + b)(b(c + a) + c(a + b))

=
∑

a(a + b)(ab + 2bc + ca).

Now ∑
a(a + b)(ab + 2bc + ca) =

∑
a2(ab + bc + ca) +

∑
a2bc +

∑
ab(ab + bc + ca) +

∑
ab2c

= (a2 + b2 + c2 + ab + bc + ca)(ab + bc + ca) + 2abc(a + b + c)

= (a + b + c)2(ab + bc + ca)− (ab + bc + ca)2 + 2abc(a + b + c)

= (a + b + c)2(ab + bc + ca)− (a2b2 + b2c2 + c2a2)

≤ (a + b + c)2(ab + bc + ca)− abc(a + b + c)
= (a + b + c)(a + b)(b + c)(c + a),

33
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which was what we wanted.

2.3.7. Solution: For the right part, from Hölder’s Inequality we have(∑ x√
x + y

)(∑ x√
x + y

)(∑
x(x + y)

)
≥ (x + y + z)3

⇔
∑ x√

x + y
≥

√
(x + y + z)3

x2 + y2 + z2 + xy + yz + zx
.

So it remains to show that(
(x + y + z)3

x2 + y2 + z2 + xy + yz + zx

)2

≥ 27
4

(yz + zx + xy).

Let x + y + z = 1 and xy + yz + zx = t. Thus we need to prove that(
1

1− t

)2

≥ 27t

4

⇔ t(1− t)2 ≤ 4
27

⇔ (4− 3t)(1− 3t)2 ≥ 0,

which is obvious using t ≤ 1/3.

Now for the left part,we need to prove that

∑
cyc

x√
x + y

≤ 4

√
27
4

(x2 + y2 + z2).

We have

∑
cyc

x√
x + y

=
∑
cyc

(
4

√
x

x + y

)(
4

√
x3

x + y

)

≤

√√√√(∑
cyc

√
x

x + y

)(∑
cyc

√
x3

x + y

)

≤

√√√√ 3√
2

∑
cyc

x

√
x

x + y
.

Thus we need to show that (
3√
2

∑
cyc

x

√
x

x + y

)2

≤ 27
4

(x2 + y2 + z2).

Or, (∑
cyc

x

√
x

x + y

)2

≤ 3
2

(x2 + y2 + z2).
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But we have (∑
cyc

x

√
x

x + y

)2

=

( ∑
x
√

x
√

y + z
√

z + x√
(x + y)(y + z)(z + x)

)2

=

(∑
(x
√

y + z)(
√

x
√

z + x)
)2

(x + y)(y + z)(z + x)

≤
(∑

x2(y + z)
)

(
∑

x(z + x))
(x + y)(y + z)(z + x)

.

Let p = x + y + z, q = xy + yz + zx, r = xyz. Then it remains to show that

(pq − 3r)(p2 − q)
pq − r

≤ 3
2

(p2 − 2q)

⇔ 2(p3q − pq2 − 3p2r + 3qr) ≤ 3(p3q − p2r − 2pq2 + 2qr)

⇔ p3q + 3p2r ≥ 4pq2

⇔ p2q + 3pr ≥ 4q2

⇔ (x + y + z)2(xy + yz + zx) + 3xyz(x + y + z) ≥ 4(xy + yz + zx)2

⇔ (x2 + y2 + z2)(xy + yz + zx) + 2(xy + yz + zx)2 + 3xyz(x + y + z) ≥ 4(xy + yz + zx)2

⇔ (x2 + y2 + z2)(xy + yz + zx) + 3xyz(x + y + z) ≥ 2(xy + yz + zx)2

⇔ (x2 + y2 + z2)(xy + yz + zx) ≥ 2(x2y2 + y2z2 + z2x2) + xyz(x + y + z)

⇔
∑
sym

x3y ≥ 2
∑
sym

x2y2

⇔
∑
sym

xy(x− y)2 ≥ 0,

which is obviously true.

3.1.5. a ≥ b ≥ c implies a/b + c ≥ b/c + a ≥ c/a + b.
3.2.6. Use Example 3.2.3.
3.3.4. Solution: WLOG assume that a ≥ b ≥ c. This implies a + b ≥ c + a ≥ b + c. Therefore

a

b + c
≥ b

c + a
≥ c

a + b

On the other hand, we have ab ≥ ca ≥ bc. Therefore a(b+ c) ≥ b(c+a) ≥ c(a+ b). Applying Chebyshev’s
inequality for the similarly sorted sequences

(
a

b+c ,
b

c+a , c
a+b

)
and (a(b + c), b(c + a), c(a + b)) we get

3
∑ a

b + c
· a(b + c) ≥

(∑ a

b + c

)(∑
a(b + c)

)
⇔ 3(a2 + b2 + c2) ≥ 2(ab + bc + ca)

∑ a

b + c

which was what we wanted.



36 CHAPTER 6. HINTS AND SOLUTIONS TO SELECTED PROBLEMS

3.3.5. Solution: Let x = an

b+c , y = bn

c+a , z = cn

a+b . Then

∑ a

b + c
=
∑

n

√
an

(b + c)n

=
∑

n

√
x

(b + c)n−1

=
∑

n

√
an−1x

(ca + ab)n−1
.

But the sequences ( n
√

an−1x, n
√

bn−1y,
n
√

cn−1z) and
(

n

√
1

(ca+ab)n−1 , n

√
1

(ab+bc)n−1 , n

√
1

(bc+ca)n−1

)
are oppo-

sitely sorted, since the sequences (a, b, c) and (x, y, z) are similarly sorted. Hence by Rearrangement
inequality we get

∑
n

√
an−1x

(ca + ab)n−1
≤
∑

n

√
an−1x

(ab + bc)n−1
=
∑

n

√
xan−1

bn−1(c + a)n−1
.

Finally using Hölder’s inequality

∑ a

b + c
≤
∑

n

√
xan−1

bn−1(c + a)n−1
≤ n

√(∑ x

bn−1

)(∑ a

c + a

)n−1

,

which was what we wanted.

5.1.2. The following stronger inequality holds:

a

(b + c)4
+

b

(c + a)4
+

c

(a + b)4
≥ (a + b + c)2

2(ab + bc + ca)(a + b)(b + c)(c + a)
.

You may use Chebyshev’s inequality to prove it.

5.1.3. First Solution: Consider the numbers a2 − 1, b2 − 1, c2 − 1. Two of them must be of the same
sign i.e. either positive or negative. WLOG suppose that a2 − 1 and b2 − 1 are of the same sign. Then
(a2 − 1)(b2 − 1) ≥ 0⇒ a2b2 + 1 ≥ a2 + b2 ≥ (a+b)2

2 .

Now the inequality can be written as

c2(a2b2 + 1)− 2c(a + b) + 2 + (a− b)2 ≥ 0.

Using the above argument, we’ll be done if we can show that

c2(a + b)2

2
− 2c(a + b) + 2 + (a− b)2 ≥ 0.

Or,
1
2

(ca + bc− 2)2 + (a− b)2 ≥ 0,

which is obviously true.

Second Solution: WLOG we may assume that a, b, c are positive. First we have the following inequality

a2 + b2 + c2 + 3(abc)
2
3 ≥ 2(ab + bc + ca).
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This follows from Schur and AM-GM

(a
2
3 )3 + (b

2
3 )3 + (c

2
3 )3 + 3(abc)

2
3 ≥

∑((
a

2
3

)2
b

2
3 + a

2
3

(
b

2
3

)2
)
≥
∑

2ab.

So we’ll be done if we can show that
2 + (abc)2 ≥ 3(abc)

2
3 .

Let (abc)
2
3 = t. We need to show that

2 + t3 ≥ 3t,

or,
(t− 1)2(t + 2) ≥ 0,

which is obviously true.

5.1.7. Solution: The inequality is equivalent to

∑ a3 + b3

a3 + b3 + abc
≥ 2

Verify that
a3 + b3

a3 + b3 + abc
≥ a + b

a + b + c

⇔ c(a2 + b2 − ab) ≥ abc

⇔ c(a− b)2 ≥ 0

which is obviously true. Hence we conclude that

∑ a3 + b3

a3 + b3 + abc
≥
∑ a + b

a + b + c
= 2.

5.1.12. Solution: The inequality is equivalent to∑ (a + b)(b + c)√
(b + c− a)(c + a− b)

≥ 4(a + b + c).

From AM-GM we get

(a + b)(b + c)√
(b + c− a)(c + a− b)

≥ 2(a + b)(b + c)
b + c− a + c + a− b

=
(a + b)(b + c)

c
.

Therefore it remains to show that ∑ (a + b)(b + c)
c

≥ 4(a + b + c).

Since the sequences { 1
a , 1

b ,
1
c} and {(c + a)(a + b), (a + b)(b + c), (b + c)(c + a)} are oppositely sorted, from

Rearrangement we get ∑ (a + b)(b + c)
c

≥
∑ (a + b)(b + c)

b
= a + b + c +

ca

b
.

Therefore it remains to show that ∑ ca

b
≥ a + b + c,
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which follows from Rearrangement ∑ ca

b
≥
∑ ca

c
= a + b + c.

5.1.15. Solution: Let x = 1
2a2+2

, y = 1
2b2+2

, z = 1
2c2+2

. Thus a =
√

1−2x
2x , b =

√
1−2y
2y , c =

√
1−2z
2z . Then

from the given condition x + y + z = 1 and we need to prove that

∑
cyc

√
(1− 2x)(1− 2y)

2x · 2y
≤ 3

2
,

or ∑
cyc

√
(y + z − x)(z + x− y)

xy
≤ 3.

But we have ∑
cyc

2

√
(y + z − x)(z + x− y)

xy
≤
∑
cyc

(
y + z − x

y
+

z + x− y

x

)
= 6.

Hence we are done.

Remark: The inequality holds even if a, b, c are real numbers.
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