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Introduction

The aim of this note is to acquaint students, who want to participate in mathematical Olympiads, to
Olympiad level inequalities from the basics. Inequalities are used in all fields of mathematics. They have
some very interesting properties and numerous applications. Inequalities are often hard to solve, and it is
not always possible to find a nice solution. But it is worth approaching an inequality rather than solving
it. Most inequalities need to be transformed into a suitable form by algebraic means before applying
some theorem. This is what makes the problem rather difficult. Throughout this little note you will find
different ways and approaches to solve an inequality. Most of the problems are recent and thus need a
fruitful combination of wisely applied techniques.

It took me around two years to complete this; although I didn’t work on it for some months during
this period. I have tried to demonstrate how one can use the classical inequalities through different ex-
amples that show different ways of applying them. After almost each section there are some exercise
problems for the reader to get his/her hands dirty! And at the end of each chapter some harder problems
are given for those looking for challenges. Some additional exercises are given at the end of the book for
the reader to practice his/her skills. Solutions to some selected problems are given in the last chapter to
present different strategies and techniques of solving inequality problems. In conclusion, I have tried to
explain that inequalities can be overcome through practice and more practice.

Finally, though this note is aimed for students participating in the Bangladesh Mathematical Olympiad
who will be hoping to be in the Bangladesh IMO team I hope it will be useful for everyone. I am really
grateful to the MathLinks forum for supplying me with the huge collection of problems.

Samin Riasat
28 November, 2008
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Chapter 1

The AM-GM Inequality

1.1 General AM-GM Inequality

The most well-known and frequently used inequality is the Arithmetic mean-Geometric mean inequality
or widely known as the AM-GM inequality. The term AM-GM is the combination of the two terms
Arithmetic Mean and Geometric Mean. The arithmetic mean of two numbers a and b is defined by “TH’.
Similarly v/ab is the geometric mean of a and b. The simplest form of the AM-GM inequality is the

following:

Basic AM-GM Inequality. For positive real numbers a, b

a;bzwﬁ.

The proof is simple. Squaring, this becomes

(a + b)? > 4ab,

which is equivalent to
(a —b)*>0.

This is obviously true. Equality holds if and only if a = b.

Example 1.1.1. For real numbers a, b, ¢ prove that

a?+ b+ %> ab+be+ ca.

First Solution. By AM-GM inequality, we have

a? +b? > 2ab,
b + ¢ > 2be,

A+ a? > 2ca.

Adding the three inequalities and then dividing by 2 we get the desired result. Equality holds if and only
ifa=b=c.

Second Solution. The inequality is equivalent to

(a—b2+(b—-c)?+(c—a)?>0,

1



2 CHAPTER 1. THE AM-GM INEQUALITY

which is obviously true.
However, the general AM-GM inequality is also true for any n positive numbers.

General AM-GM Inequality. For positive real numbers a1, a9, ..., a, the following inequality holds.

a1+a2+.”+a">"a1a2 7
= © O,

n

with equality if and only if a1 = as = --- = a,,.

Proof. Here we present the well known Cauchy’s proof by induction. This special kind of induction
is done by performing the following steps:

i. Base case.
. P, — P,_1.

Here P, is the statement that the AM-GM is true for n variables.

Step 1: We already proved the inequality for n = 2. For n = 3 we get the following inequality:

%ﬂc > Yabe,

3 we equivalently get

Letting a = 2%, b = y?,c = 2
:U3+y3+23—3xyz > 0.
This is true by Example 1.1.1 and the identity
2?4yt + 23 = 3ryz = (v +y+2) (2P +yP + 22— 2y —yz — 22).
Equality holds for x = y = z, that is, a = b =c.

Step 2: Assuming that P, is true, we have

ap+ax+---+an
n

> Yairag - ap.
Now it’s not difficult to notice that

ar +ag+--- +ag, > n/a1az - an +nYap 10012 G2n > 20 Xfaraz - azn

implying P»,, is true.

Step 3: First we assume that P, is true i.e.

ayr+ag+---+an

> Yaijasg - - Q.
n
As this is true for all positive a;s, we let a, = »~Vajas - a,_1. S0 now we have
a1 +ag+---+an n o
aiag - - Ap_1 "Yaiaz - ap_1

n
n _n_
— \/(a1a2 “ee an_l)nfl
= "V/aiaz- - Gp-1

= Qn,

v




1.1. GENERAL AM-GM INEQUALITY

which in turn is equivalent to

ayt+azx+---+ap—1
Y >a, = "Vajaz a1

n—1

The proof is thus complete. It also follows by the induction that equality holds for a1 = ags = - -

Try to understand yourself why this induction works. It can be useful sometimes.

- = ay.

Example 1.1.2. Let aq,as9,...,a, be positive real numbers such that ajas---a, = 1. Prove that

(14+a1)(14+a2) - (1+a,) >2"
Solution. By AM-GM,
1 + a1 2 2\/&;

1+a2 Z 2\/&2,

1+a, > 2a,.

Multiplying the above inequalities and using the fact aias - --a,=1 we get our desired result.

holds for a; = 1,1 =1,2,...,n.
Example 1.1.3. Let a, b, c be nonnegative real numbers. Prove that

(a+b)(b+c)(c+a) > 8abc.

Solution. The inequality is equivalent to

() (58) (55) 2w

true by AM-GM. Equality holds if and only if a = b = c.

Example 1.1.4. Let a,b,c > 0. Prove that

a® b 3
—+—+—=>a+b+ec
bc  ca ab

Solution. By AM-GM we deduce that

3 3
a—+b+cz3\3/a—-b-c:3a,
be be
b3 b3
f+c+a23\3/—-c~a:3b,
ca ca
3 3
i+a+b23\3lc—-a'b:3c.
ab ab

Equality
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Adding the three inequalities we get

ad vl
— 4+ —4+ =42 b > b
bc+ca+ b+ (a+b+c)>3(a+b+c),

which was what we wanted.

Example 1.1.5. (Samin Riasat) Let a,b, ¢ be positive real numbers. Prove that

ab(a +b) + be(b+ ¢) + ca(c+ a) >Zab\/ (b+c)(c+a).

cyc
Solution. By AM-GM,

2ab(a + b) + 2ac(a + ¢) + 2bc(b + ¢)
=ab(a + b) + ac(a + ¢) + be(b + ¢) + ab(a + b) + ac(a + ¢) + be(b + c¢)

=a?(b+c)+ b3 (a+c)+ A(a+Db) + (a®b+ b*c + a®c) + (ab® + bc? + a’c)
>a*(b+c) +b*(a+c)+c(a+b) + (a®b+ bPc + a’c) + 3abe
—aQ(b+c)+b2(a+C)—1—02(a+b)+ab(a+c)+bc(a+b)+ac(b+c)

2(b+c)+abla+c)) + (b*(a+c)+bc(a+b)) + (*(a+b) + ac(b+c))
2\/a3b (b+¢)(a+c)+2y/bc(a+c)(a+b) +2v/ABa(a+b)(b+c)

:Qab\/Z(b+ )a+c)+ 20b\/i(a+ ¢)(a+b) + 2ac\/2(a L )b+ ).

Equality holds if and only if a = b = c.

Exercise 1.1.1. Let a,b > 0. Prove that

+—->2.

>
ISEIRS

Exercise 1.1.2. For all real numbers a, b, ¢ prove the following chain inequality

3(a> 4+ b+ ) > (a+ b+ c)* > 3(ab + be + ca).

Exercise 1.1.3. Let a, b, ¢ be positive real numbers. Prove that

a® 4+ b 4 > a®b + b*c + Fa.

Exercise 1.1.4. Let a, b, ¢ be positive real numbers. Prove that

a® + 03 + A 4 ab® + be? 4 ca® > 2(a®b + bc + *a).

Exercise 1.1.5. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

A+ +E>a+b+e.
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Exercise 1.1.6. (a) Let a,b,c > 0. Show that

1

11
b —+-4+=)>0.
(a+ +c)<a+b+c)_

b) For positive real numbers a1, as, ..., a, prove that
p

11 1 )
(ar+az+-+an) | —+—+-+—) >n’
ay a2 Qp

Exercise 1.1.7. Let a, b, ¢ be nonnegative real numbers such that a + b+ ¢ = 3. Prove that

a’ + 0%+ +ab+be+ca> 6.

Exercise 1.1.8. Let a,b,c,d > 0. Prove that

a2 v 2 2
—+—+—+—>a+b+c+d
b c d a

1.2 Weighted AM-GM Inequality

The weighted version of the AM-GM inequality follows from the original AM-GM inequality. Suppose
that a1, ao,...,a, are positive real numbers and let my, mo, ..., m, be positive integers. Then we have

by AM-GM,

a1+ar+--+atatat+agttan+an+ o +ay

N~
mi ma2 mn

mi+my+ -+ my

1
mi+mo+--+mn

>lajay...a1a2az2...a9 - apGy ... ay

mi ma2 mn

This can be written as

miai + maag + -+ Mpay > (amlamZ..-amn)m
Z \ay Gy :
mi+my + -4 my "

Or equivalently in symbols

> mja; S (H aT’”) S lmz
Yomi ' '
m m
5 k= n +k n for k =1,2,...,n we can rewrite this as follows:
mj miq mao cee mp

Letting i, =

Weighted AM-GM Inequality. For positive real numbers aj,as,...,a, and n weights i1,12,...
n

such that Z i = 1, we have
k=1

ariy + agia + - -+ + apin > altay - apr.

y In
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Although we have a proof if i1, s, ...,1, are rational, this inequality is also true if they are positive real
numbers. The proof, however, is beyond the scope of this note.

Example 1.2.1. Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 3. Show that

albec® <1

Solution. Notice that

at+b+ec

3
S ab + be + ca

a+b+c
(abbcca) a+})+c ’

1:

A\

which implies abb¢c® < 1.
Example 1.2.2. (Nguyen Manh Dung) Let a,b, ¢ > 0 such that a + b+ ¢ = 1. Prove that

a®’c® + abbc® + abicb < 1.

Solution. From weighted AM-GM, we have

2242
sl > (ab0c) wire = a2 4 b% 4 2 > abbe”,
a+b+c

ab + be + ca S

Fy > (abbcca) T — ab+ be+ ca > a®bbcc,
a c

ac + ba + cb S

Thic ° (abcb) =¥ = ab+be+ ca > ahecl.
a c

Summing up the three inequalities we get
(a+b+c)? > a®c + a’b°c® + b2cbac

That is,
a®bbc® + albc® + afbee < 1.

Very few inequalities can be solved using only the weighted AM-GM inequality. So no exercise in this
section.
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1.3 More Challenging Problems

Exercise 1.3.1. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

a

b ¢
+-4+—-—>a+b+ec
b ¢ a

Exercise 1.3.2. (Michael Rozenberg) Let a, b, c and d be non-negative numbers such that a+b+c+d =

4. Prove that
4 e boc d
abed = b ¢ d a

Exercise 1.3.3. (Samin Riasat) Let a,b, ¢ be positive real numbers. Prove that

ad+ b+ 3 - a+b+ec a?+b®+ 2 - ab + b%c + c2a
3 = 3 3 = 3 '

Exercise 1.3.4.(a) (Pham Kim Hung) Let a, b, ¢ be positive real numbers. Prove that

3
g+§ E+ 3vabc >4
b ¢ a a+b+c

(b) (Samin Riasat) For real numbers a,b,c > 0 and n < 3 prove that

Exercise 1.3.5. (Samin Riasat) Let a,b, ¢ be positive real numbers such that a + b+ ¢ = ab+ bc + ca

and n < 3. Prove that

a2+b2+c2+ 3n >34
—_t 44— n.
b c a a+br+cz—
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Chapter 2

Cauchy-Schwarz and Holder’s
Inequalities

2.1 Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality is a very powerful inequality. It is very useful in proving both cyclic and
symmetric inequalities. The special equality case also makes it exceptional. The inequality states:

Cauchy-Schwarz Inequality. For any real numbers aj,ao,...,a, and by, bs, ..., b, the following in-
equality holds.

(af+a3+-+a2) (BT + b5+ +0b2) > (arby + asby + -+ + anbyn)?,

a a a
with equality if the sequences are proportional. That is if b—l = b—2 =...= b—n
1 2 n

First proof. This is the classical proof of Cauchy-Schwarz inequality. Consider the quadratic
flx) = Z(aix — b))% = xQZa? - xZQaibi + Zb? = Az® 4+ Bz + C.
i=1 i=1 i=1 i=1
Clearly f(z) > 0 for all real z. Hence if D is the discriminant of f, we must have D < 0. This implies

n 2 n n
B? < 4AC = (Z 2aibi> <4 (Z a?) (Z b?) ;
=1 =1

=1

(£4) (89)= ()

b b b
Equality holds when f(z) = 0 for some x, which happens if © = 1_2 n
al a9 Qg

which is equivalent to
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Second Proof. By AM-GM, we have

a% b% 2a1b1
2 + 2 Z ;
A REL VIS
CL% b% > 2a2b2

Rl LT (Za) (28)

2a., by,
S AD @) (0)

Summing up the above inequalities, we have

2a7, i
\/ ) (Z8)

(1 )(Zf*) (&)

which is equivalent to

b2
Equality holds if for each i € {1,2,...,n}, 2 P, a2 a2 = b% n bg +’ T which in turn is equiv-
alent to 2 =2 = ... = I
b bo b,

We could rewrite the above solution as follows
2 2
a: b:
2= z + L
Za%+a§+---+ag Zb%+b§+-~+bg

2aibi
V0@ +a3++a2) (B 483+ +12)

>

Here the sigma Z notation denotes cyclic sum and it will be used everywhere throughout this note. It
is recommended that you get used to the summation symbol. Once you get used to it, it makes your life
easier and saves your time.

Cauchy-Schwarz in Engel Form. For real numbers a;,as,...,a, and by, bo,...,b, > 0 the follow-
ing inequality holds:
2 2 2 . 2
I B O R (2.1)
b by bn by +by+ -+ by,
with equality if and only g2 O
b1 by bn

Although this is a direct consequence of the Cauchy-Schwarz inequality, let us prove it in a different
way. For n = 2 this becomes

x oy r+y

2 2 2
LA (e 1) (2.2)

Clearing out the denominators, this is equivalent to

(ay — ba)? > 0,
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which is clearly true. For n = 3 we have from (2.2)

aijﬁJru +@2((11-1-6124-“ + an)?
bi b by by +bo+---+ by

And the case of equality easily follows too.
From (2.1) we deduce another proof of the Cauchy-Schwarz inequality.

Third Proof. We want to show that

(£ (£4) 2 (Sae)’

Let a; be real numbers such that a; = b;c;. Then the above inequality is equivalent to

af%+a7§+__.+@> (a1 +ag + -+ ap)?
b2 b3 b2 T b b3 A+ D2

This is just (2.1).

Example 2.1.1. Let a, b, ¢ be real numbers. Show that

3(a®> +b°+¢*) > (a+b+c)

Solution. By Cauchy-Schwarz inequality,

P+ 124+ 1)@+ +AH) >0 -a+1-b+1-0)>

Example 2.1.2. (Nesbitt’s Inequality) For positive real numbers a, b, ¢ prove that

a n b n c >3
b+c¢c c+a a+b 2

First Solution. Our inequality is equivalent to

a b c
+1+—+1+
b+c c+a a+b

(a+b+c) SRR S
a C —.
b+c¢c c+a a+b) 2

9
1> -
+ Z 5

or

This can be written as

1 1 1
2 2 2 2

where x = Vb + ¢,y = /c+ a,z = +va+b. Then this is true by Cauchy-Schwarz.

Second Solution. As in the previous solution we need to show that

(a+b+c) NI I
b+c¢c c¢c+a a+b) =2
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which can be written as

btctctata+db et oamt s s 1
. > .3
3 3 > Y/ (b+c)(c+a)(a+Db) IR

which is true by AM-GM.

Third Solution. We have

2 2
Z a _ Z a 2 (CL 4+ b + C) '
b+c ab+ ca — 2(ab+ bc + ca)
So it remains to show that

(a+b+¢)?>3(ab+bc+ca) e (a—b)*+ (b—c)? +(c—a)®>0.

Example 2.1.3. For nonnegative real numbers x,y, z prove that

\/3x2+xy—|—\/3y2+yz—|—\/3z2+zx§2(x—|—y—|—z).

Solution. By Cauchy-Schwarz inequality,

S V(B +y) < \/(Zx) (Z(Bx-i—y)) — Az gt =2z +y+2).

Example 2.1.4. (IMO 1995) Let a, b, ¢ be positive real numbers such that abc = 1. Prove that
1 n 1 " 1
adb+c) bc+a) Ala+d)

>3
-2

1 1 1
Solution. Let z = —,y = 5 z = —. Then by the given condition we obtain xyz = 1. Note that
a c

I 1 _ 2
ZW—ZM—ZW~

»\y =z

Now by Cauchy-Schwarz inequality
Z x2 S (x+y+2)? rty+=z - 3yzyz 3

y+z  2r+y+2) 2 -2 2’
where the last inequality follows from AM-GM.

Example 2.1.5. For positive real numbers a, b, ¢ prove that

a n b n ¢ -4
2a+b 2b+c 2c+a "

Solution. We have

> o<t
2a + b
a 1 3
—Z)l<1=-=
@ X(as5-3)<1 5
1 b 1
_ < -
< 222a+b_ 2
1.

b
< ZZa-l-bZ
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This follows from Cauchy-Schwarz inequality

Z b b N c? N a? S (a+b+c)? B
20 +b  2ab+b2  2bc+c2  2ca+a? T 2(ab+ be+ca) + b2 +c?+a?

Example 2.1.6. (Vasile Cirtoaje, Samin Riasat) Let z,y, z be positive real numbers. Prove that

SR (- +\/ 3
tty Vytz Vzra 2

Solution. Verify that

Valy+2)z+2) +Vye+a)@+y) + Val@+y)y +2)
V@ +y)(y+2)(z+a)

\/<x<y+z>+y<z+w>+z<w+y>>(z+x+x+y+y+z)>
@+ 9)y+2)(+2)

LHS =

IN

_ \/4,<xy+yz+zx><x+y+z>
@ +y)y+ G +2)

2.\/(:c+y)(y+z)(z+a:)+xyz
(z+y)(y +2)(z+ )

TYyz
= 2-,/1+
\/ (z+y)(y+2)(z+2)
/ 1 3
< 294/14+=-=—,
< 8
where the last inequality follows from Example 2.1.3.

Here Cauchy-Schwarz was used in the following form:

Vaz + /by + ez < (a+b+e)(z+y+ 2).

Exercise 2.1.1. Prove Example 1.1.1 and Exercise 1.1.6 using Cauchy-Scwarz inequality.

Exercise 2.1.2. Let a,b, ¢,d be positive real numbers. Prove that

a+b+c+d>
b+c¢c c+d d+a a+b—

2.

Exercise 2.1.3 Let ay, a9, ..., a, be positive real numbers. Prove that
& al a2
—+ =4+ —=2a1+ax+ - +ap
a9 as aiq

Exercise 2.1.4. (Michael Rozenberg) Let a, b, ¢, d be positive real numbers such that a?+b%4-c?>+d? =

4. Show that
a? v 2 2 4
=+ — >4
b+c+d+a_



14 CHAPTER 2. CAUCHY-SCHWARZ AND HOLDER’S INEQUALITIES

Exercise 2.1.5. Let a, b, ¢ be positive real numbers. Prove that

2 2 2
a n b n c >}
a+2b b+ 2c c+2a) T 3

Exercise 2.1.6. (Zhautykov Olympiad 2008) Let a, b, ¢ be positive real numbers such that abc = 1.
Show that

1 1 1
b(a+b) +c(b%—c) +a(c+0¢) -

| W

Exercise 2.1.7. If a,b, ¢ and d are positive real numbers such that a + b+ ¢ + d = 4 prove that

a n b N c n d > 9
14+b%2¢ 14c2d 1+d?a 14a?b~ "

Exercise 2.1.8. Let ay,as2,...,a, and by, bs,...,b, be real numbers. Prove that

\/a§+b%+ aZ+03+ 4+ a2+ 02> /(ar +az+ - +an):+ (b +by+ -+ by)?

Exercise 2.1.9. (Samin Riasat) Let a,b, ¢ be the side lengths of a triangle. Prove that

a n b 4 c > 1
3a—b+c 3b—cH+a 3c—a+b

Exercise 2.1.10. (Pham Kim Hung) Let a,b,c be positive real numbers such that a + b+ ¢ = 1.
Prove that

a n b n c <\/§
Va+2b Vb+2c e+2a 2

Exercise 2.1.11. Let a, b, ¢ > 0. Prove that

Ve e
b—l—c c+a a+b— b ¢ a)

2.2 Holder’s Inequality

Holder’s inequality is a generalization of the Cauchy-Schwarz inequality. This inequality states:

Holder’s Inequality. Let a;;,1 < i < m,1 < j < n be positive real numbers. Then the following
inequality holds

E alj

'1’:13

=1
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It looks kind of difficult to understand. So for brevity a special case is the following: for positive real
numbers a, b, c,p,q,7,x,Y, 2,

@+ +)P* + ¢ +1°) (0 + v + 2%) > (agw + bgy + cr2)”.

Not only Holder’s inequality is a generalization of Cauchy-Schwarz inequality, it is also a direct consequence
of the AM-GM inequality, which is demonstrated in the following proof of the special case: by AM-GM,

CL3 p3 1‘3
3 = S e— S S e— S S —
Za3+b5—|—05+Zp5+q3+r3+zx5—l—y3+z3

apx
Y

+ 03+ )PP+ P+ 1) (@3 + P+ 23

which is equivalent to

Y (@®+ 03+ 3) (PP + B+ r3) (2 + y® + 23) > apz + bgy + cr.

Verify that this proof also generalizes to the general inequality, and is similar to the one of the Cauchy-
Schwarz inequality. Here are some applications:

Example 2.2.1. (IMO 2001) Let a, b, ¢ be positive real numbers. Prove that

a b ¢ > 1.

+ +
VaZz +8bc Vb2 +8ca 2+ 8ab

Solution. By Hoélder’s inequality,

(Z aQC—Li—8bc> (Z aQC—LFBbc> (Z a(a® + 8bc)) > (a+b+c).

Thus we need only show that
(a+b+c)®>a+b* + & + 24abe,

which is equivalent to
(a+b)(b+c)(c+a) > 8abc.

This is just Example 1.1.3.

Example 2.2.2. (Vasile Cirtoaje) For a,b,c > 0 prove that

a a
E ———>Va+b+ >§ _—
\/7(1,4-2 “ ¢ 2a +b

Solution. For the left part, we have from Hdélder’s inequality,

(Z \/ﬂﬁ) (Z \/aiiﬂ) (Za(a—i—%)) > (a+b+c)’.

Thus 9
>a+b+c

(E &)
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16
Now for the right part, by Cauchy-Schwarz inequality we have
a a
— < b .
P \/(a+ e (Z 2a+b>
So it remains to show that
Y o<,
2a+b
which is Example 2.1.5
Example 2.2.3. (Samin Riasat) Let a,b, c be the side lengths of a triangle. Prove that
1 1 1 1
+ + < :
8abc+ (a+b—c)®>  8abc+ (b+c—a)?  8abc+ (¢c+a—0b) 3abc
Solution. We have
1 1
> <
8abc + (a+b—c¢)® ~ 3abe
1 1 3 1
<:> — J—
Z <8abc 8abc + (a+ b — c)3> ~ 8abc  3abc
a+b—c)? 1
> =
< Z8abc+ (@tb_cp =3
1

By Holder’s inequality we obtain
(a+b+c) B
3+ (b+c—a)) 3

Z (a+b—c)? N
8abc+ (a+b—c¢)3 ~ 3(24abc+ (a+b—c)3+ (a+ ¢ —b)

In this solution, the following inequality was used: for all positive real numbers a, b, ¢, x, y,
3

¥ (at+b+e)

a3
—+—> :
z ~ 3x+y+z)

+
z Y

The proof of this is left to the reader as an exercise
Example 2.2.4. (IMO Shortlist 2004) If a, b, ¢ are three positive real numbers such that ab+bc+ca =

1 1 1
§/+66+</+60+</+6a§.
a b c abe

1, prove that
Hence our inequality becomes

Solution. Note that — + 6b = w.
a a
, 1
Z {/be(Tab + be + ca) =
(abc)s

From Hélder’s inequality we have
Z {/be(Tab + be + ca) < {J/(ZQ)Q (92(}0)
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Hence it remains to show that

9(a+b+c)?(ab+ be+ ca) <

1
(abc)?
& [3abe(a + b+ ¢)]? < (ab+ be + ca)?,

which is obviously true since

(ab+ be + ca)? > 3abe(a + b+ ¢) < ZCLQ(b —c)?>0.

Another formulation of Holder’s inequality is the following: for positive real numbers a;, b;, p,q (1 < i < n)

1 1
such that — + — =1,
P q

Q|

1
aiby +agba + -+ apby < (af +ah+ -+ al)p (0] + 0+ - +0L)a.

Exercise 2.2.1. Prove Exercise 2.1.3 using Holder’s inequality.

Exercise 2.2.2. Let a,b,z and y be positive numbers such that 1 > a!' + b1 and 1 > z!! + y!'L.
Prove that 1 > a®z% + b%y5.

Exercise 2.2.3. Prove that for all positive real numbers a, b, ¢, x,y, 2,

at b S +b+c)’
@ e latbto
x oy oz 3x+y+=2)

Exercise 2.2.4. Let a,b, and ¢ be positive real numbers. Prove the inequality

a b0 I abc(a+b+ ¢
2 5t 3 5t > 5 2 ( )
b* + ¢ a*+c a’+b 2

Exercise 2.2.5. (Kyiv 2006) Let z, y and z be positive numbers such that xy + zz + yz = 1. Prove
that ) )
3 N > N 23 < (x+y+2)3
1+9y%222z 14922y 14 922yz — 18 '

Exercise 2.2.6. Let a,b,c > 0. Prove that

ab + be + ca > +vab+ bec+ ca
Vab+22  Vbc+2a2 ea+ 202 '

2.3 More Challenging Problems

Exercise 2.3.1. Let a,b,c > 0 and k > 2. Prove that

a n b n c < 3
ka+b kb+c kc+a " k41
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Exercise 2.3.2. (Samin Riasat) Let a,b, c, m,n be positive real numbers. Prove that

a? b2 2 3
>

b(ma + nb) * c(mb + nc) * alme+mna) — m+n’

Another formulation: Let a,b,c, m,n be positive real numbers such that abc = 1 Prove that

1 1 1 3
> .
b(ma + nb) + c(mb + nc) + a(mc+mna) — m+n

Exercise 2.3.3 (Michael Rozenberg, Samin Riasat) Let x,y, z > 0. Prove that

Z\/wQ—i—xy—i—yQ > Z\/2x2+xy.

cyc cyc

Exercise 2.3.4 (Vasile Cirtoaje and Samin Riasat) Let a,b,c, k > 0. Prove that

a4 + b + ¢ <\/k+1(a+b—|—c)
Vka+b Vkb+c¢ Vke+a k '

Exercise 2.3.5. (Michael Rozenberg and Samin Riasat) Let x,y, z be positive real numbers such
that xy + yz 4+ 2z > 3. Prove that

x y z
+ + >1
Vir +5y iy +5z 4z +5x

Exercise 2.3.6. Let a,b,c > 0 such that a + b+ ¢ = 1. Prove that

Va2 +abe Vb2 + abe \/c2+abc< 1
¢+ ab a+ be b+ca ~ 2vabe

*Exercise 2.3.7. (Ji Chen, Pham Van Thuan and Samin Riasat) Let z,y, z be positive real
numbers. Prove that

24 24 2
</27(x + y? + 2?2) > T LYy Lz > </27(yz+zm+xy)
4 Vrty Vytz o Jrtx 4




Chapter 3

Rearrangement and Chebyshev’s
Inequalities

3.1 Rearrangement Inequality

A wonderful inequality is that called the Rearrangement inequality. The statement of the inequality is as
follows:

Rearrangement Inequality. Let (a;)}_; and (b;)]"; be sequences of positive numbers increasing or
decreasing in the same direction. That is, either a; > a9 > --- > a, and by > by > --- > b, or
a; <ag <---<ayand by < by <--- <b,. Then for any permutation (¢,) of the numbers (b,) we have
the following inequalities

n n n
Zaibi > Zaici > Zaibn—i—i-l-
i1 i—1 i—1

That is, the maximum of the sum occurs when the two sequences are similarly sorted, and the minimum
occurs when they are oppositely sorted.

Proof. Let S denote the sum aiby + azbs + -+ + anb, and S’ denote the sum a1by + agby + -+ +
azby + -+ ayby + - + apb,. Then

S = 8" = agby + ayby — azby — aybe = (az — ay)(be — by) > 0,

since both of a, — a, and b, — b, are either positive, or negative, as the sequences are similarly sorted.
Hence the sum gets smaller whenever any two of the terms alter. This implies that the maximum must
occur when the sequences are sorted similarly. The other part of the inequality follows in a quite similar
manner and is left to the reader.

A useful technique. Let f(aj,aq,...,a,) be a symmetric expression in ai,as,...,a,. That is, for
any permutation a},al,...,a, we have f(a1,aq2,...,a,) = f(a},d, ... al). Then in order to prove
f(ar,az,...,a,) > 0 we may assume, without loss of generality, that a; > ay > --- > a,. The reason

we can do so is because f remains invariant under any permutation of the a;’s. This assumption is quite
useful sometimes; check out the following examples:

Example 3.1.1. Let a, b, ¢ be real numbers. Prove that
a’ 4+ b+ > ab+ be + ca.

19



20 CHAPTER 3. REARRANGEMENT AND CHEBYSHEV’S INEQUALITIES

Solution. We may assume, WLOG!, that a > b > ¢ > 0, since the signs of a, b, ¢ does not affect the left
side of the inequality. Applying the Rearrangement inequality for the sequences (a, b, c) and (a,b,c) we
conclude that

a-a+b-b+c-c>a-b+b-c+c-a

= a® +b*+c* > ab+bc+ca.
Example 3.1.2. For positive real numbers a, b, ¢ prove that
a® + b3+ 2 > a?b + b%c + Fa.
Solution. WLOG let a > b > c. Applying Rearrangement inequality for (a?,b% ¢?) and (a,b,c) we

conclude that
a2 a+b b+ -c>a® b+b2-c+c-a.

Example 3.1.3. (Nesbitt’s inequality) For positive real numbers a, b, ¢ prove that

a b c
+ +
b+c c+a a+bd

3
> —.
2

Solution. Since the inequality is symmetric in a, b, ¢ we may WLOG assume that @ > b > ¢. Then verify

that b+c<c+a <a+bie. lerc > CJ%G > a}rb. Now applying the Rearrangement inequality for the

sequences (a, b, ¢) and (ﬁ, CJ%G, a%rb) we conclude that

a b c b c a
- + > + -+ :
b+c¢c c¢c+a a+b " b+c ct+a a+b

and
a b c c a b

b+c+c+a+a+b - b+c+c—|—a+a—|—b'
Adding the above inequalities we get

a b c b+c c+a a+bd
2 + + > =3
b+c c+a a+bd b+c c+a a+bd

which was what we wanted.

Example 3.1.4 (IMO 1975) We consider two sequences of real numbers 1 > x93 > ... > x, and
Y1 > Y2 > ... > Yn. Let z1,20,....,2, be a permutation of the numbers 1, ys, ..., yn. Prove that

do@i— ) <Y (wi—a)
=1

i=1

Solution. Expanding and using the fact that Y y? = 3" 22, we are left to prove that

n n
§ TiYi = g iz,
i=1 i=1

'WLOG=Without loss of generality.
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which is the Rearrangement inequality.

Example 3.1.5. (Rearrangement inequality in Exponential form) Let a,b,c > 1. Prove that

a®b’c® > abbc?

First Solution. First assume that a > b > ¢ > 1. Then
a®b’c® > abbhec?
PN aa—bbb—c > Ca—bcb—c,
which is true, since a®~? > ¢* and b*—¢ > b—°.
Now let 1 < a < b <e¢. Then
a®Pct > abc”
N Cc—bcb—a > bc—bac—a7

which is also true. Hence the inequality holds in all cases.

Second Solution. Here is another useful argument: take In on both sides
alna+blnb+clnec>alnb+blnc+ clna.

It is now clear that this holds by Rearrangement since the sequences (a, b, ¢) and (Ina,lnb,In c) are sorted
similarly.

Note that the inequality holds even if a,b,c > 0, and in this case the first solution works but the second
solution needs some treatment which is left to the reader to fix.

Example 3.1.6. Let a,b,c > 0. Prove that

a® + 3 + A > 3abe.

Solution. Applying the Rearrangement inequality for (a, b, ¢), (a, b, ¢), (a,b, ¢) we conclude that
a-a-a+b-b-b+c-c-cza-b-c+b-c-at+c-a-b.

In the same way as above, we can prove the AM-GM inequality for n variables for any n > 2. This
demonstrates how strong the Rearrangement inequality is. Also check out the following example, illus-
trating the strength of Rearrangement inequality:

Example 3.1.7 (Samin Riasat) Let a,b, ¢ be positive real numbers. Prove that

2
2
a a a
< —_— .
(Z b+c> - (Z b2+bc> <Zc+a>
cyc cyc cyc
Solution. Note that the sequences <\ / ﬁ?’c, 1/ Cl_’Tga, 1/ aﬁ;) and (\/ca}rabv \/ab—li-bc’ \/bc—ll—ca) are oppositely

sorted. Therefore by Rearrangement inequality we get

a asd 1 asd 1
_ . < . .
Zb+c Z\/IH-C \/ca+ab_2\/b+c \/ab+bc
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Now from Cauchy-Schwarz inequality

Z\/bfc'\/abibczz\/ b(bajrc) .\/c—;TaS \/(Zb(bajc)) (Zcia>

which was what we wanted.

Can you generalize the above inequality?

Exercise 3.1.1.

Exercise 3.1.2.

Exercise 3.1.3.

Exercise 3.1.4.

Exercise 3.1.5.

Exercise 3.1.6.

Exercise 3.1.7.

Exercise 3.1.8.

Exercise 3.1.9.

Prove Example 1.1.4 using Rearrangement inequality.

For a,b,c > 0 prove that

ab  bc ca
—+—+—->a+b+ec
c a b

Let a,b,c > 0. Prove that
A+ +S 1 1 1

adbd3c3 T a b ¢

Prove Exercise 2.1.3 using Rearrangement inequality.

Let a, b, ¢ be positive real numbers. Prove that

a n b n c S 1 n 1 n 1
bb+c) clc+a) ala+bd) ~b+c cH+a a+b

(Yaroslavle 2006) Let a > 0,b > 0 and ab = 1. Prove that

a 4 b
a?+3 b2 +3

1
< —.
-2
Let a, b, ¢ be positive real numbers satisfying abc = 1. Prove that

ab®> +bc® +ca’®>a+b+e.

Let a, b, c be positive real numbers such that a + b+ ¢ = 1. Prove that

ab+c¢ ac+b bec+a
+ + >2
a+b a+c b+c

(Novosibirsk 2007) Let a and b be positive numbers, and n € N. Prove that

(n+ 1) (@™ + ") > (a+b)(a" +a" b+ -+ D).
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3.2 Chebyshev’s inequality
Chebyshev’s inequality is a direct consequence of the Rearangement inquality. The statement is as follows:
Chebyshev’s Inequality. Let (a;)! ; and (b;)]~; be two sequences of positive real numbers.

(i) If the sequences are similarly sorted, then

a1by + agba + - - - + apby S a1—|—a2+~-+an.bl—i-bg—i-”'—i—bn

. 3.1
n B n n ( )
(@) If the sequences are oppositely sorted, then
arby + agba + - - - + apby, catart - tan by +ba+---+ by (3.2)
n - n n ' '

Proof. We will only prove (3.1). Since the sequences are similarly sorted, Rearrangement inequality
implies

a1by + asbs 4+ - -+ + apby, = a1by + asbs + - - - + anby,
aiby + agba + - - - + apby, > arba + asbs + - - + anby,
aiby + agba + - - + apby, > a1bs + asbs + - - - + apbo,

aiby + agbs + - - - + apby, > arb, +agby + -+ anby_1.
Adding the above inequalities we get

n(aiby + agba + -+ apby) > (a1 +ag + -+ ap)(by + ba+ -+ + by),

which was what we wanted.
Example 3.2.1. For a,b,c > 0 prove that

3(a®+ b +c) > (a+b+e)

Solution. Applying Chebyshev’s inequality for (a, b, c) and (a, b, c) we conclude that

3a-a+b-b+c-c)>(a+b+c)(a+b+c).

Example 3.2.2. Let a,b,c > 0. Prove that

a+¥+ 1 1 1

adb3c3 T a b

Solution. From Chebyshev’s inequality we conclude that
3(a® + 6% +c®) > (a® + 05 + ) (a® + b7 + ¢?)
> 3a2b202(a2 b2t 02)
> 3a2b202(ab + bc + ca),
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hence N o o
b b+b 1 1 1
a® + +c Za—{—c—l—ca:i_i_i_’_i'
a3b3c3 abe a b ¢

Example 3.2.3. Let a > b>c>0and 0 <z <y < z. Prove that

a_i_é cza+b+c>3(a+b+c>. (3.3)
T Yy =z Jryz rT+y+z
Solution. Applying Chebyshev’s inequality for a > b > ¢ and % > i > % we deduce that
b 1 1 1 3 b b
3<a_|_+C)Z(a+b+6)(++>z(a++c)29(a++c>7
r Yy =z r Yy =z Jryz rT+y+z

which was what we wanted. Here the last two inequalities follow from AM-GM.

Example 3.2.4. Let a,b,c > 0. Prove that

a® b 3
—+—+—>a+tb+tec
bc  ca ab

Solution. WLOG assume that a > b > ¢. Then a3 > b% > 3 and be < ca < ab. Hence using (3.3) and
(3.1) we conclude that

Z&3> 3(a® + b3+ ¢?) S (a+b+c)(a®+ b+ c?)
bc -

> b .
ab + bc + ca ab + bc + ca Zatote

Exercise 3.2.1. Prove the second Chebyshev’s inequality (3.2).

Exercise 3.2.2. Let ay,a2,...,a, > 0 and k > 1. Prove that

(/a’f+a’§+~--+a£2 S mtat-fan
n n )

Exercise 3.2.3. Deduce a proof of Nesbitt’s inequality from Chebyshev’s inequality. (Hint: you may use
Example 3.2.3)

Exercise 3.2.4. Let a; > as > --- > a, and by < by < --- < b, be positive. Prove that

" a L@ tat--tan >n(a1—|—a2+---—|—an)

Z b T fbe. b bitbatootby

Exercise 3.2.5. Let a>c¢ >0 and b > d > 0. Prove that

(a+b+c+d)? > 8(ad + be).

Exercise 3.2.6. (Radu Titiu) Let a,b,c > 0 such that a® + b? + ¢ > 3. Show that

a? b2 2

b+c+c+a+a—|—b

3
> —.
-2
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Exercise 3.2.7. Let a,b,c > 0 such that abc = 1. Prove that

9 1 ab
- < _— b<3 -
2 = 4L~ c2(a+b) Za - Zc2(a+b)

cyc cyc cyc
Exercise 3.2.8. Let a,b,c > 0. Prove that

a®t’c® > (abe) e

3.3 More Chellenging Problems
Exercise 3.3.1. (Samin Riasat) Let a,b,c > 0. Prove that

max{a,b,c}  min{a,b,c} S at b+c

1.
min{a,b,c} = max{a,b,c} = Jabe

Exercise 3.3.2. Let a; > as--- > a, and by > by > --- > b, be positive.

(4) If (¢;)f~, is a permutation of (b;)}'_; prove that

bi1—c1 ba—c2 bn—c
a; ay ceea T > L

by +ba+---+0
n

(i) Let b= " Prove that

b1—b_ba—b bn—b
a; ayt U eecayt T 2> 1

Exercise 3.3.3. Let z,y,2 € R". Prove that

23+ g3+ 23 N 3Yryz
3ryz TH+y+z "~

Exercise 3.3.4. (Samin Riasat) Let a, b, ¢ be positive real numbers. Prove that

a? + b2+ 2 2 a b c
—_— > = + + .
ab+bc+ca 3 \b+c c+a a+bd

*Exercise 3.3.5. (Samin Riasat) Let a, b, ¢ be positive real numbers and n be a positive integer. Prove

that . -
a a” a
(Zb+c> = (Czy;bmrbn—lc) <§c+a) ’

cyc
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Chapter 4

Other Useful Strategies

4.1 Schur’s Inequality

Let a, b, ¢ be positive real numbers, and n be positive. Then the following inequality holds:
a"(a—=b)(a—c)+b"(b—c)(b—a)+ " (c—a)(c—b) >0,

with equality if and only if a = b = c or a = b,¢ = 0 and permutations.

The above inequality is known as Schur’s inequality, after Issai Schur.

Proof. Since the inequality is symmetric in a,b,c WLOG we may assume that a > b > c¢. Then
the inequality is equivalent to

(a=b)(a"(a—c)=b"(b—c))+c"(a—c)(b—c) >0,

which is obviously true.

4.2 Jensen’s Inequality

Suppose f is a convex function in [a,b]. Then the inequality

f<a1+a2+---+an> o fla) + flaz) +- - + flan)

n - n

is true for all a; € [a, b]. Similarly, if f is concave in the interval the sign of inequality turns over. This is
called Jensen’s inequality.

The convexity is usually determined by checking if f”(x) > 0 holds for all € [a,b]. Similarly for
concavity one can check if f”(x) <0 for all z € [a,b]. Here is an example:

Example 4.2.1. Let a,b,c > 0. Prove that

+b+
LB > (HHC) °
- 3

Solution. Consider the function f(z) = xlnz. Verify that f”’(z) = 1/x > 0 for all z € R*. Thus f is

27
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convex in R™ and by Jensen’s inequality we conclude that

a+b+c

a+b+c) 3

fla)+ f(b) + f(c) > 3f <a—|—§_|—c><:>lnaa+lnbb+ln06231n( 3

which is equivalent to

b a+b+c
In(a®’c®) > In <a—|—+c) ,

3

which was what we wanted.

4.3 Minkowski’s Inequality

Minkowski’s inequality states that for positive numbers z;, y; and p the following inequality holds:

(E:@r+wy>pfi(§:ﬁ>p-F<Z:%>p-

=1
4.4 Ravi Transformation

Suppose that a, b, c are the side lengths of a triangle. Then positive real numbers x,y, z exist such that
a=xz+y,b=y+zandc=z+z.

To verify this, let s be the semi-perimeter. Then denote z = s —a,x = s — b,y = s — ¢ and the

. : . b+c—a -
conclusion is obvious since s — a = — > (0 and similarly for the others.

Geometrically, let D, E, F denote the points of tangency of BC,CA, AB, respectively, with the incir-
cle of triangle ABC. Then BD = BF =x,CD = CFE =y and AE = AF = z implies the conclusion.

Here are some examples of how the Ravi transformation can transform a geometric inequality into an
algebraic one:

Example 4.4.1. (IMO 1964) Let a, b, ¢ be the side lengths of a triangle. Prove that

a’(b+c—a)+b*(c+a—b)+c(a+b—c) < 3abe.

First Solution. Verify that the inequality can be written as
(a+b—c)(b+c—a)(c+a—10b) < abe.
Let a=2+y,b=y+ z and ¢ = z 4+ x. Then the above inequality becomes
8ryz < (x +y)(y+ 2)(2 + x),

which is Example 1.1.3.
Second Solution. The inequality is equivalent to
a’ + b + ¢ + 3abe > a’b + ab® + b*c + be + Pa + ca2,

or,

a(la—b)(a—c)+bb—c)(b—a)+c(c—a)(ic—b) >0,
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which is Schur’s inequality.

Example 4.4.2. Let a, b, c be the lengths of the sides of a triangle. Prove that

\/3<\/CE+\/%+\/@> >Va+b—c+Vb+c—a+Ve+a—b.

Solution. Let z,y,z > 0 such that a = x4+ y,b =y 4+ z,¢ = z + . Then our inequality is equivalent to

32\/(m+y)(y+z)22<z\/§> .

cyc cyc

From Cauchy-Schwarz inequality,

3 VE+y)y+2)=23> (y+ V)

cyc cyc
> 2 Z y+4 Z Vzx
cyc cyc
2
=2 (Z \/§> .
cyc

4.5 Normalization

Homogeneous inequalities can be normalized, e.g. applied restrictions with homogeneous expressions in
the variables. For example, in order to show that a® + b3 4 ¢* — 3abc > 0, one may assume, WLOG, that
abc=1or a4+ b+ c=1 etc. The reason is explained below.

Suppose that abc = k3. Let a = ka’,b = kV/,c = kc’. This implies a’b'¢ = 1, and our inequality
becomes a” 4 b 4 ¢ — 3a’b'¢’ > 0, which is the same as before. Therefore the restriction abc = 1 doesn’t
change anything of the inequality. Similarly one might also assume a + b+ ¢ = 1. The reader is requested
to find out how it works.

4.6 Homogenization

This is the opposite of Normalization. It is often useful to substitute a = x/y,b = y/z,¢ = z/x, when
the condition abc = 1 is given. Similarly when a + b+ ¢ = 1 we can substitute a = z/x +y + 2,0 =
y/x+y+ z,¢c=z/x+y+ z to homogenize the inequality. For an example of homogenization note that
we can write the inequality in exercise 1.3.1 in the following form:

a N b n c a +b+c
b ¢ a~  Yabe
On the other hand, if we substitute a = x/y,b = y/z,c = z/x the inequality becomes,
zx wy Yz _ T Y oz
y2 o 22 a2 Ty + z + x’

which clearly looks easier to deal with (Hint: Rearrangement). Many such substitutions exist, and the
reader is urged to study them and find them using his/her own ideas.
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Chapter 5

Supplementary Problems

Exercise 5.1.1. Let a, b, c be nonnegative reals. Prove that

\/ab+bc+ca < i/(a—kb)(b—i—c)(c—i—a).
3 - 8

Exercise 5.1.2. For a,b,c > 0 prove that

a b

(b+c)t + (c+a)t *

3
@10 = 2atb)brocta)

Exercise 5.1.3. Let a, b, ¢ be real numbers. Prove that

2+ (abe)? + a® + b* + 2 > 2(ab + be + ca).

Exercise 5.1.4. (Michael Rozenberg) Let a,b, ¢ be non-negative numbers such that a + b+ ¢ = 3.
Prove that

aV/2b + 2 + b\/2c + a2 + c\/2a + b2 < 3V/3.

Exercise 5.1.5. For any acute-angled triangle ABC show that

tan A + tan B + tan C' > f,
r

where s and r denote the semi-perimeter and the inraduis, respectively.

Exercise 5.1.6. (Iran 2008) Find the smallest real K such that for each x,y,z € RT:

/Y +yvz + 2V < K/ (x +y)(y + 2)(z + ).

Exercise 5.1.7. (USA 1997) Prove the following inequality for a,b,c¢ > 0

1

1
a3+b3+abc+

n 1 1
b3 + 3 + abe

: . < —.
a3 4+ c3 +abc — abc

Exercise 5.1.8. Let x > y > 2 > 0 be real numbers. Prove that

l’zy

2 2

z z°r
s T
z x Y
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32 CHAPTER 5. SUPPLEMENTARY PROBLEMS

Exercise 5.1.9. (Greece 2007) Let a, b, c be sides of a triangle. Show that

(c+a—b)* N (a+b—c)4+ (b+c—a)*

>ab+b .
ala+b—c) blb+c—a) c(c—l—a—b)_a Hhetca

Exercise 5.1.10 (Samin Riasat) Let a, b, ¢ be sides of a triangle. Show that

(C+a_b)4 (a+b_c)4 (b+c_a)42a2+b2+62
ala+b—c) blb+c—a) clc+a—-0)

Exercise 5.1.11. (Crux Mathematicorum) If a, b and ¢ are the sidelengths of a triangle, then prove
the inequality

(IH—C)2 (C—I—a)2 (a+b)2
> 6.
a?+bc b 4+ca cZ+ab —

Exercise 5.1.12. Let a, b, c be the side-lengths of a triangle. Prove that

d(a+b)b+e)Va—b+ec>4la+b+e)y/(—a+b+c)a—b+c)a+b—c).

cyc

Exercise 5.1.13. Prove that if a,b,c > 0 then
Vabe(vVa+ Vb +e) + (a+ b+ ¢)? > 4y/3abc(a + b + c).

Exercise 5.1.14. Let a, b, c be non-negative real numbers such that a + b+ ¢ = 1. Prove that

1
ab+bc+ca§gz\/(l—ab)(l—bc)§a2+b2+c2.

cyc

Exercise 5.1.15. Let a,b and ¢ be nonnegative real numbers such that
1 1 1

=2.
a2—|—1+b2+1+02—|—1

Prove that ab + bc + ca <

N W

Exercise 5.1.16. (Korea 1998) Let I be the incenter of triangle ABC. Prove that
3(IA% + IB? 4+ IC?) > AB? + BC? + CA%

Exercise 5.1.17. (Samin Riasat) Let a, b, c be positive real numbers such that a% + 5% + % = 3. Prove
that

a’b? + b+ ca® < 3.
Exercise 5.1.18. (Samin Riasat) Let z,y, z be positive real numbers. Prove that

x z T+ +z z+x
—I—y—l—Z\/ y—i-\/y + .
Yy oz oz 2z 2z 2y

Exercise 5.1.19. (Samin Riasat) Let x,y, z be positive real numbers. Prove that

Ty Yz zZx §
¢<x+y><y+z> +\/(y+2)(2+x) W@ﬂ)(ﬁy) =3



Chapter 6

Hints and Solutions to Selected
Problems

1.1.2. Expand and use Example 1.1.1.
1.1.3. a® + a® + b > 3a®b.

3a
1.3.1. Use ¢ + 7 +f Ve
b a+b+c
b +C—i_CL - \3/abc

1.3.4. See hint for 1.3.1.
1.3.5. Prove and use the following:
a2 b 2 (at+b+e)(a®+b*+P)

2l 4>
b +c+a - ab + bc + ca

2

a _ a
2.1.2. ;% = 4

2.1.5. Use Example 2.1.5.

2.3.6. Solution: Note that > ¥ ‘éi:g‘;bc =3 V(bf:acfcgb .

Therefore our inequality is equivalent to

Z\/ a(c+ a)(a+b) a+b+c
(b+c)c+a) — 2Vabe

= Z (a + b)\/be(c + a)(a + b) < %(a—l—b—l—c)(a—i—b)(b—{—c)(c—l—a).
By AM-GM,
> ala+b)-2/be(c+a)a+b) <> ala+b)(b(c+a)+cla+D))
:Za(a+b)(ab—l—2bc+ca).
Now

Za(a+ b)(ab+ 2bc + ca) = Za2(ab+bc+ ca) + Zazchr Zab(ab+ bc + ca) + Zab%
= (a® 4+ b® + ¢* + ab+ be + ca)(ab + be + ca) + 2abe(a + b+ ¢)
= (a+b+c)(ab + be + ca) — (ab+ be + ca)? + 2abe(a + b + ¢)
= (a+b+c)?(ab + be + ca) — (a*b* + b*c2 + 2a?)
< (a+b+c)*(ab+ bc + ca) — abc(a+ b+ ¢)
=(a+b+c)a+b)(b+c)(c+a),

33



34 CHAPTER 6. HINTS AND SOLUTIONS TO SELECTED PROBLEMS

which was what we wanted.

2.3.7. Solution: For the right part, from Hoélder’s Inequality we have

<§:véi><§:véi><§:ﬂx+W)Z(x+y+zP

Vr+y z? + y? +22+xy+yz+zx

So it remains to show that

(z4+y+2)>°
22+ y?+ 224y +yz+zx

2 o7
> ZLyz + 20+ ay).
Let x+y+ 2 =1 and xy + yz + zz = t. Thus we need to prove that
1 \?_ 27t
- >
1—-t) = 4
et(l-1)?<

4
=27
& (4-3t)(1 -3t

) 07

which is obvious using ¢ < 1/3.

Now for the left part,we need to prove that

Z\/ﬁ \/ (22 4+ y? + 22).

cyc

We have

> -2 (i55) ((55)
(/) (3

3 T
—— X .
vﬁég z+y

IN

5)

IA

Thus we need to show that

(IZ x—l—y) (22 4+ + 22).
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But we have

=\ _( Savavitavaas \
T _ TA/T\Y + 22+
(Z w+y> <¢<x+y><y+z><z+x>>
_ (ZeviFaavE+a)’
(@ +y)(y+2)(z+2)

_ (E2w+2) (D= +2)
STttt

Let p=z+y+2,q9g=xzy+yz+ zr,r =xyz. Then it remains to show that

(pg—3r)(p* —q) _3
P < 50" 29

& 2(p*q — pg® — 3p°r + 3qr) < 3(pPq — p*r — 2pg® + 2qr)
& pq + 3p*r > 4pg®

& pPq+ 3pr > 4¢°

& (x4+y+2)2(xy +yz+ 2x) + 3ovyz(z +y + 2) > 4y +yz + 2x)?

& (22 +y? + 22) (wy +yz + 2x) + 2(wy + yz + 22)? + 3zyz(z +y + 2) > 4(vy + yz + 2x)?
e (22 + 92 + 2D (xy + yz + 2x) + 3zyz(c +y + 2) > 2(zy + yz + 2x)?

& (224 2+ 22) (wy + yz + 2x) > 22y + 222 + 22?) 4 zyz(z + y + 2)

<:>Zx3y2 22:}:23/2

sym sym
sym

which is obviously true.

3.1.5. a>b>cimpliesa/b+c>b/c+a>c/a+b.
3.2.6. Use Example 3.2.3.
3.3.4. Solution: WLOG assume that a > b > ¢. This implies a +b > ¢+ a > b+ c¢. Therefore

a b c
> >
b+c cH+a " a+bd

On the other hand, we have ab > ca > be. Therefore a(b+c¢) > b(c+a) > ¢(a+b). Applying Chebyshev’s

inequality for the similarly sorted sequences (ﬁ, CJ%I, a%rb) and (a(b+ ¢),b(c+a),c(a+ b)) we get

SZbiC-a(b—l—c)Z (Zbic> (Za(b+c))

2,12, 2 a
& 3(a? 40 +c)22(ab+bc+ca)zb+c

which was what we wanted.
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3.3.5. Solution: Let x = ﬁnc,y = ci—na,z = a+b Then

a a™
Zb+czz (b+c)"
z
=2 {prg
=2 (b+c)
a1y
_Z ca+ab”1

But the sequences (Van—1z, {/bn=ly, V/c—1z) and (7(/(ca+alb)n*17 7\1/(ab+blc)"*1’ T\L/(bc_;’_c]&)nfl) are oppo-

sitely sorted, since the sequences (a,b,c) and (z,y,z) are similarly sorted. Hence by Rearrangement
inequality we get

a1l a1z ran—1
I [
Finally using Holder’s inequality

St < e < (S (T)

which was what we wanted.

5.1.2. The following stronger inequality holds:

a b c (a+b+c)?
(b+c)* * (c+a)t + (a+0b)4 = 2(ab+ bc+ ca)(a+b)(b+c)(c+a)

You may use Chebyshev’s inequality to prove it.

5.1.3. First Solution: Consider the numbers a? — 1,b> — 1,c¢> — 1. Two of them must be of the same

sign i.e. either positive or negative. WLOG suppose that a®> — 1 and b — 1 are of the same sign. Then
2

(@2 —1)(2 —1) > 0= a2? +1 > a2 + b2 > b,

Now the inequality can be written as
Aa®b? +1) — 2¢(a+b) + 2 + (a — b)?

Using the above argument, we’ll be done if we can show that

2 b2
C(“;)—zc(a+b)+2+(a—b)220.
Or,

1
i(ca+bc—2)2+(a—b)2

which is obviously true.

Second Solution: WLOG we may assume that a, b, ¢ are positive. First we have the following inequality

2
3

a? + 0% + % 4 3(abc)3 > 2(ab + be + ca).
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This follows from Schur and AM-GM
) ) 2
P 0 4 P 4 st = 3 ((aF)0F o (08)°) = e

So we’ll be done if we can show that

wlno

(a

2 + (abc)? > 3(abc)%.

Let (abc)% = t. We need to show that
2+ % >3t
or,

(t—1)%(t+2) >0,

which is obviously true.

5.1.7. Solution: The inequality is equivalent to

S
a3+ b3 +abe —

Verify that
a’ + b3 a+b
a’+ b3 +abc ~ a+b+c
& c(a® +b* — ab) > abe

& cla—b)*>0

which is obviously true. Hence we conclude that
333
a’+b a+b
7 s o7 9
Za3+b3+abc - Za—i—b—l—c

5.1.12. Solution: The inequality is equivalent to

b)(b
> latb)b+o > 4(a+b+c).
V(b+c—a)(ct+a—0)

From AM-GM we get

(a+b)(b+c) S 2 +b)(b+c)  (a+b)(b+c)
\/(b+c—a)(c+a—b)_b—i-c—a—i-c—l—a—b_ c '

Therefore it remains to show that

Z(a—i_b)c(b—i_c)zél(a—l-b—l-c).

Since the sequences {1, +, 1} and {(c+a)(a+b), (a+b)(b+c), (b+c)(c+a)} are oppositely sorted, from
Rearrangement we get

(a+b)(b+c) (a+b)(b+c) ca
— > = b —.
D2 atbtet
Therefore it remains to show that ca
> - Zatbte
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which follows from Rearrangement

ca ca
==Y —=a+bte
b c

5.1.15. Solution: Let x = 2a21+2,y = 2b21+2,z = 262+2 Thus a = chx,b \/%,c = ‘/1;7222. Then
from the given condition z 4+ y + z = 1 and we need to prove that

2:6 2y -2’

cyc

or

Z —i—z—:c(z—i—:c—y)g&
Y

cyc

But we have

¥ (y+z—z)(z+x—y) éz:(erz—ac%_z%—ac—y> _s

Ty

cyc cyc

Hence we are done.

Remark: The inequality holds even if a, b, ¢ are real numbers.
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